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ABSTRACT

In this paper, we present a novel shadow detection framework by
investigating the mutual complementary mechanisms contained in
this specific task. Our method is based on a key observation: in a sin-
gle shadow image, shadow regions and non-shadow counterparts
are complementary to each other in nature, thus a better estimation
on one side leads to an improved estimation on the other, and vice
versa. Motivated by this observation, we first leverage two parallel
interactive branches to jointly produce shadow and non-shadow
masks. The interaction between two parallel branches is to retain
the deactivated intermediate features of one branch by introducing
the negative activation technique, which could serve as complemen-
tary features to the other branch. Besides, we also apply identity
reconstruction loss as complementary training guidance at the im-
age level. Finally, we design two discriminative losses to satisfy
the complementary requirements of shadow detection, i.e., nei-
ther missing any shadow regions nor falsely detecting non-shadow
regions. By fully exploring and exploiting the complementary mech-
anism of shadow detection, our method can confidently predict
more accurate shadow detection results. Extensive experiments
on the three widely-used benchmarks demonstrate our proposed
method achieves superior shadow detection performance against
state-of-the-art methods with a relatively low computational cost.
Our source code is available at this repository.
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1 INTRODUCTION

As a common natural phenomenon, shadows are usually cast when
associated objects completely or partially block the light sources
from a specific direction. Hence, aware of the shadow location could
offer valuable visual hints for perceiving the scene geometry [18,
19, 29], the light sources position [23, 30], camera parameters [43],
etc. This will largely facilitate various scene understanding related
works, e.g., image segmentation [8], 3D scene reconstruction [42]
and rough geometry estimation [31]. Therefore, detecting shadows
from a single image is crucial for computer vision tasks.

Currently, a series of methods have been proposed for this spe-
cific task, which could be roughly divided into two flavors: tradi-
tional methods and convolutional neural networks (CNNs) methods.
The former mainly focuses on designing hand-crafted priors and
assumptions, e.g., color chromaticity [4, 5], textures and illumina-
tion cues [16, 34, 50]. Since the hand-crafted priors are designed for
specific shadow scenes, when the shadow scenarios deviate from
the predefined assumptions, the detection results of these methods
in complex conditions are often unsatisfactory.

Recently, deep CNNs-based approaches merge as a promising
solution for shadow detection and dominate this field. However,
how to accurately detect shadows still remains challenging, e.g.,
existing methods are easily mistaking the ambiguous areas. To
address the above drawbacks, researchers attempt to [2, 13, 13,
15, 40, 51] explore effective contextual information or multi-scale
techniques to boost the detection performance. There also exist
methods to explore the potential hints to resolve these ambiguous
areas. For example, FDRNet [52] suggests the intensity-bias cue and
devises a novel decomposition and re-weighting strategy to mitigate
the intensity-bias for shadow detection. However, such external
cues also bring the side effect, e.g., due to the gradual changes of
the shadow effects near the shadow boundary [24, 25], the intensity
bias will affect the shadow intensity across the shadow boundary,
resulting in coarse boundary results. However, there is potential
complementary information internally within this specific task that
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has not yet been utilized. For example, the above methods usually
employ a single-branch framework for shadow detection, which
fails to utilize the mutual complementary contextual information
from their non-shadow counterparts, limiting their further shadow
detection performance.

Instead, in this paper, we explore and exploit the mutual com-
plementary mechanisms contained in this specific task for shadow
detection. We first notice the essential complementarity between
the shadow regions and their non-shadow counterparts. Therefore,
we propose a novel shadow detection framework, which consists
of two interactive branches to concurrently estimate the shadow
and non-shadow masks. In order to collaborate and boost these
two complementary parts, we introduce the negative activation
technique and the identity reconstruction constraint to fully mine
the complementarity at the feature and image level. For the fea-
tures interaction, we retain the deactivated intermediate features
of one branch and offer these features as additional supplementary
information to the other branch, and vice versa. At the image level,
the results of two branches should always sum to a constant at each
corresponding position, and we impose this identity constraint as
the guidance to optimize our framework. With the complemen-
tary auxiliary information from each other’s branches, our network
could embrace interesting merits: while improving the performance
of shadow detection, it also obviously improves the confidence of
predicted results.

In addition, we further explore the complementary requirements
of shadow detection: not to miss all shadow areas, as well as not to
mistake any non-shadow counterparts. Moreover, we transfer these
complementary requirements as two complementary discrimina-
tive losses for our framework. To be specific, we introduce the inner
and outer discriminators to encourage the shadow detection branch
to predict the accurate shadow locations in an adversarial manner.
Moreover, we further employ the dilation and erosion operation on
the ground truth masks to generate pseudo masks for benefiting
the discriminating capability of two discriminators. Finally, our
framework could confidently predict more accurate shadow detec-
tion results by fully exploring and exploiting the complementary
mechanism of shadow detection.

In summary, the contributions of this paper are as follows:

e We propose a novel shadow detection framework, in which
the mutual complementary information contained in this spe-
cific task is explored and exploited, e.g., the complementarity
between the shadow regions and non-shadow counterparts,
and the complementary requirements of shadow detection.
We observe that the shadow and surrounding non-shadow
regions are interrelated and complementary. Hence, we elab-
orately design dual interactive branches to cooperatively
offer complementary auxiliary information and supervision
for each other at the feature and image-level via introducing
the negative activation technique and identical reconstruc-
tion loss.

We investigate the complementary requirements of shadow
detection: neither missing any shadow regions nor falsely
detecting non-shadow regions. Moreover, we further devise
the complementary discriminative constraints derived from
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the above complementary requirements to boost the perfor-
mance of shadow detection.

e Extensive experiments indicate that our proposed method
could achieve superior shadow detection performance both
quantitatively and qualitatively with relatively smaller pa-
rameters and faster inference speed.

2 RELATED WORK

In this paper, we mainly focus on shadow detection from a single
shadow image. The corresponding studies can be roughly divided
into two groups: traditional and Convolutional Neural Networks
(CNNs)-based methods.

2.1 Traditional Methods

Early methods focus on exploring various hints for shadow detec-
tion, e.g., illumination models or color priors, hand-crafted image
features, edges, and textures. Zhu et al.[50] attempt to detect shad-
ows in real-world scenes where color information is unavailable
based on the usual characteristics of shadows. Vicente et al.[37]
identify shadows via incorporating the learned appearance and
contextual cues of shadows. However, These strategies could pro-
duce relatively accurate detection results, but their performances
will drop significantly when dealing with complex shadow scenes
where the handcrafted features are far from enough to discern the
shadows regions.

2.2 CNNs-based Methods

Thanks to the remarkable success of CNNs in various computer
vision tasks, CNNs-based shadow detection methods are capable of
easily identifying shadow context from the public shadow datasets.
Therefore, CNNs-based shadow detection methods have been far
exceeding the performance of previous traditional methods. Khan
et al.[20] firstly propose a CNNs-based framework to automatically
detect shadows by building a 7-layer network structure. Shen et
al.[32] constructs CNNs to exploit the detected shadow edges and
efficient least-square optimization for detecting shadow regions.

Recently, many works tend to design more efficient and effec-
tive feature extraction modules to improve the network’s ability
to understand shadow scenes, thereby further enhancing shadow
detection performance. For example, Zhu et al.[51] formulate the
recurrent attention residual module and construct the bidirectional
feature pyramid network to explore the global and local shadow
contexts. Hu et al.[15] present a direction-aware spatial module
to aggregate the contextual features for better detecting shadows.
DSD [47] proposes a distraction-aware module to explicitly con-
sider various ambiguous cases for improving the performance of
shadow detection. Fang et al.[2] explore an effective context aug-
mentation with the parallel multi-scale convolution operations for
robust shadow detections.

There also exist studies that attempt to address shadow detec-
tion from other perspectives. RCMPNet [27] develops a designed
ensemble model to predict corresponding confidence maps of pre-
vious methods’ results, causing their performance to be greatly
dependent on the performance of the previous methods. ADNet
[26] employs the shadow attenuation network to produce more
adversarial training examples for their shadow detection network.



Single Image Shadow Detection via Complementary Mechanism

MM °22, October 10-14, 2022, Lisboa, Portugal

Backbone

mﬁ Res-Block RelU RelLU™

- ~
@ Concatenation i | Feature maps
N

Figure 1: Illustration of generator G of our proposed shadow detection framework, which consists of one parameters-shared
encoder for extracting backbone features, two interactive decoders as detection heads for predicting M; and M,,;. Moreover, we
provide visualizations of interactive features in the above pipeline.

Hu et al.[14] tend to resolve the shadow detection for the general
real-world shadow scenes.

In the era of deep learning, CNNs-based methods also explore
the potential cues for shadow detection, e.g., combining with multi-
task learning [1, 38], intensity bias [52], ensemble techniques [27].
However, few methods notice the complementarity between the
shadow regions and their non-shadow counterparts for this specific
task. To the best of our knowledge, we are the first to explore and
exploit this complementary mechanism to boost the performance
of shadow detection. Moreover, previous methods also make use of
Generative Adversarial Networks (GANs) to address the shadow
detection problem. However, the purpose of using GANs is different
from ours. scGAN [28] introduces a tunable sensitivity parameter
to overcome the inflexibility of GANSs in the shadow detection task.
ST-CGAN [38] takes advantage of GANSs to obtain the high-level
semantics and global scene characteristics for shadow detection.
Unlike theirs, we utilize the tailored GANs to implement the com-
plementary requirements of shadow detection, e.g., the specific
inputs after erosion or dilation operation for discriminators.

3 METHOD

We present our proposed shadow detection framework in Figure 1.
In this section, we would like to further describe the motivation for
designing the above framework and the details of our framework.

3.1 Motivation

Here we illustrate the motivation behind the effective complemen-
tary mechanisms utilized in our framework. The first complemen-
tarity is that we observe that the shadow regions and non-shadow
counterparts are mutually interrelated and complementary in na-
ture. The shadow mask M and non-shadow counterpart M, them-
selves should satisfy the identity constraint relationship: 1= Mg +
M,.s. The design of dual detection branches could collaborate these
two estimations by reducing the output of one branch from the
original input as complementary auxiliary information for the other
branch. However, previous methods only predict shadow masks,
which naturally ignores such auxiliary information. Furthermore,
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Figure 2: Visual results of DSD [47] and FDRNet [52] with
the different inputs. The inputs are the original images and
the cropped patches that contain only the shadow regions.
When the cropped patches are used as inputs, the shadow
detection performance of the previous methods drops drasti-
cally, indicating the surrounding non-shadow information
is crucial for shadow detection.

inspired by the fact that the information of the surrounding non-
shadow regions as references is essential for existing methods to
realize the judgment of the shadow location. As shown in Figure 2,
although the existing methods could predict the shadow masks well
in the images with shadows and non-shadow regions. However, the
cropped patches from original inputs only contain shadow regions,
and the performance of these methods drops significantly. This
also indicates that the assistance of the surrounding non-shadow
regions is also required and important for shadow detection.

Therefore, we explicitly explore and exploit the complemen-
tary relationship between the non-shadow and shadow regions to
achieve better performance. We develop a novel shadow detection
framework, which jointly generates the shadow mask M and their
non-shadow counterpart M,,s via dual interactive branches. Then,
we utilize the complementary information through the interaction
of intermediate features between two branches and the identity
supervision for the final outputs.

Except for the complementary mechanism between the shadow
and non-shadow regions, we also explore and exploit the comple-
mentary requirements of shadow detection: neither missing any
shadow regions nor falsely detecting non-shadow regions. These
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two requirements are obviously complementary, and only by meet-
ing these two requirements, accurate shadow detection results could
be obtained. Hence, motivated by the above complementary require-
ments, we devise two complementary discriminative losses imposed
on the estimated results of the shadow detection branch and im-
plement them with two complementary discriminators (Dipner
& Doyter). Utilizing Djnner imposes the inner discriminative con-
straint to reduce the detection network to miss any ambiguous
shadow regions, e.g., shadow regions like non-shadow patterns.
Meanwhile, utilizing Doy er imposes the outer discriminative con-
straint to avoid falsely detecting non-shadow regions like shadow
patterns. Note that similar requirements could also be applied to
the non-shadow detection branch, but due to the limited memory
of our device, we only utilize the complementary requirements for
the shadow detection branch. Extensive experiments indicate that
this complementarity also brings obvious improvement.

3.2 The Generator G

Our Generator G is in line with the classical encoder-decoder struc-
ture. However, unlike the previous methods, our generator G in-
cludes one parameters-shared encoder for extracting the backbone
features, two interactive decoders as detection heads for predicting
M, and M, given the input shadow images I € [0, 1]CXWXH. C,
H and W represent the channel, height and width of the original
images, respectively. Next, we provide detailed descriptions of the
implementation architecture of our framework.

Backbone Encoder. Following [52], we also employ the light-
weight EfficientNet-B3 [33] as our backbone network to extract
the hierarchical features, namely F; (i = 1, 2, - - -, m). After that,
these features with different scales are aggregated as encoder fea-
tures with the up-sampling and concatenation operations. Finally,
in order to reduce the dimensions of encoder features Fg and the
computation costs, we apply the 1X1 point-wise convolutional lay-
ers to reduce their channels to 32. The aforementioned operations
can be defined as

¥ = Concat([Fo, F], .. EL]),
Fg = Convsix1(Fg),

1)
where T denotes the bilinear up-sampling operation.

Dual Interactive Decoders. Dual decoders share the same ar-
chitecture, consisting of several Residual Blocks [10] as our basic
blocks. Each basic block adopts ReLU [6] as the activation func-
tion after the convolution, which is one of the widely-used activa-
tion functions in current network architectures. Intuitively, in the
decoder for predicting shadow masks, the activation function is
devised to highlight (activate) the desired shadow regions under su-
pervised learning, and vice versa. Because of the complementarity
between the shadow and non-shadow counterparts, the deactivated
features of the shadow detection decoder could be delivered to the
non-shadow detection decoder. On the contrary, the deactivated
features of the non-shadow detection decoder could be delivered
to assist the shadow detection. Hence, we introduce the Negative
Activation Technique (NAT) [12] to retain the deactivated features
to achieve the interaction between two decoders at the feature
level. Assuming that F is the intermediate feature, then the NAT

6720

Yurui Zhu et al.

operation of the ReLU function can be defined as

F~ = ReLU™ (F) = F — ReLU(F) = min{F, 0}. @)

As shown in Figure 1, we conduct the interaction of the two
branches after the basic block of each branch. Here, we utilize Ff
(i € 1,2 for two decoders ) to represent outputs of the I-th basic
block, and F;+1 to represent the inputs of the (I + 1)-th basic block
to illustrate the feature interaction process between two decoders
as follows:

Fi*! = Concat ([ReLU (FL), ReLU™ (EL)]),

FL! = Concat([ReLU (FL), ReLU™ (F})]) ®
2 = 2/ 1 .

Finally, we optimize our generator G with various objective
functions. Following [47, 52], we adopt the weighted binary cross-
entropy loss for the results of the shadow detection branch, which
is defined as

. N i - (j
Ler(Ms,Mo) = = 37 (M 1og(M)+
/ 4)

N . (i
(1= M 1og(1- M),
where Mg denotes the ground truth shadow masks; j denotes the
pixel index along the spatial dimension. N, Ny, and N refer to
the number of pixels in the shadow regions, the number of pixels
in the non-shadow regions, and the number of pixels in the entire
image, respectively. Similarly, the loss of the non-shadow detection
branch, which is defined as

N N, A ~ (f
Leeo(Mps, Mps) = — Z [ ﬁMr(lé) log(Mr(zjs) )+
J (5)
N . n .
< (1= M log(1 - M )],
where My denotes the ground truth non-shadow masks; j denotes

the pixel index along the spatial dimension. Moreover, the estimated
results Mg and M should satisfy the identity constraint as follows:

Liden.(Ms; I\A/[ns> 1= ||Ms + Mns =14, (6)
where 1 denotes an all-ones matrix of the same size as M and Mj,s.
Besides, we also impose adversarial losses, which are defined as

lfdv = E(Is,Ms)~Pdaza (L, M) [log(Dinner (Ls, M) ]+
E(Is,Ms)~Pdaza(Is,Ms) [log(Douter (Is, My))],

where I; is the input shadow image, acting as the conditional input
in the discriminators. Therefore, the total loss of our generator G
is a weighted sum of the predefined losses:

®)

LG = Leer + AceaLcez + Aiden. Liden. + Aadu-gacdva

where Acez, ;4. and A4, indicate the weight factors.

3.3 Dual Complementary Discriminators

These two complementary discriminators have the same network
architecture, but different functions. The architectures for Dippner
and Dyyyer refer to [38, 46]. During the training phase, we refer
to the Generative Adversarial Networks (GANs) [7] to update the
shadow detection network and discriminators in an alternately
iterative manner.
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Figure 3: Illustration of our proposed Dual Discriminators,
which are designed to achieve the complementary require-
ments of shadow detection.

Inner Discriminator. The inner discriminator Djpper is trained
to distinguish whether the detection shadow results miss any shadow
regions. Meanwhile, in order to fool Djpper, our generator G has
to detect the shadow masks Mg covering possible shadow regions.
Therefore, we achieve the first requirement in an adversarial fash-
ion. Moreover, we employ the image erosion operation [3, 17] on
the ground truth masks to obtain pseudo masks M€ for enhanc-
ing the discriminating capability of Djnpner. Note that dilation and
erosion are basic image morphological processing operations. The
dilation operation often utilizes a structuring element for probing
and expanding the shapes contained in the input image. And the
erosion operation often utilizes a structuring element for probing
and reducing the shapes contained in the input image. Therefore,
the eroded masks naturally miss partial shadow regions, and the
dilated masks naturally include some extra non-shadow regions,
which could help the inner discriminator to distinguish whether
the detection shadow results miss any shadow regions. Therefore,
the corresponding adversarial constraint to optimize Djpper can be
defined as

ado = B(LuMy)~Paara(1,M,) 108 (Dinner (s, Ms)) |+
B (1, M) ~Paara (16 10B(1 = Dinner (I, MO+ (9)
E(IS’MS)diam (I, NL5) [log(1 = Dinner (Is, Ms))].

Outer Discriminator. The outer discriminator Doy zer is trained
to distinguish whether the detection shadow branch falsely detects
any non-shadow regions as shadows. Meanwhile, in order to fool
Douter, our generator G has to detect the shadow masks M, and
avoid detecting possible non-shadow regions. Similarly, we employ
the image dilation operation on the ground truth masks to obtain
pseudo masks MSD . The dilated masks naturally include some extra
non-shadow regions, which could help the outer discriminator to
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distinguish whether the shadow results falsely contain any non-
shadow regions. The adversarial constraint of Dyyzer can be defined
as

outer
Ludu

E(IS,M?)~Pdam(Is,M?) [log(1 - Douter(Is,MsD))]"'

= IE(Is,Ms)~Pdam(Is,Ms) [log(Douter(IS> M) ]+
(10)
E (1, M14)~Pyara (1, 01,) 1081 = Douter (Is, Ms))].

Finally, with the help of Dipner and Doyzer, we could naturally
achieve the complementary requirements of shadow detection. Fur-
thermore, the generator G has an incentive to produce a more accu-
rate shadow mask under the designed discriminative constraints.

3.4 Experiments

Implementation Details. We implement our proposed shadow
detection framework via the PyTorch platform on the PC with the
RTX 1080Ti GPU. For training, the training images are resized to
the fixed resolution of 416 X 416 and applied random flipping as
the augmentation strategy. The proposed framework is optimized
for 30 epochs by the Adamax [21] optimizer with a fixed learning
rate of 1le — 3. The minimum training batch size is 4. The whole
framework takes about 2 hours on the SBU and 1 hour on the ISTD
dataset. For the hyperparameters, the weight factors (Ace2; digen.»
and A4, ) in Equation (8) are empirically set as 1, 1e — 4 and 1le — 2.
Following [1, 26, 27, 27, 52], we also apply the fully connected CRF
operation [22] to refine the estimated results in the inference phase.

Dataset. We conduct shadow detection experiments on the three
representative benchmark datasets, i.e., SBU [36], UCF [50], and
ISTD [38] dataset. SBU dataset includes 4089 and 638 pairs of images
for training and testing. ISTD dataset includes 1870 image triples
(shadow images, shadow-free images, and shadow masks). This
dataset has been separated into 1330 and 540 triplets for the training
and testing. Following the same experiment setting with previous
methods [1, 26, 27, 27, 52], we train our framework on the SBU
training dataset, and test on the SBU and UCF testing dataset. The
testing for the ISTD dataset is utilizing the model trained on the
corresponding training dataset.

Evaluation Metric. Following previous methods [1, 27, 52],
we adopt the widely-used metric, balance error rate (BER) [35], to
evaluate the quantitative performance. BER is defined as

1 TP TN
BER=(1- =( )+ (11)
2 TP+ FN TN + FP

where TP, TN, FP, and FN stand for the number of True Positives,
True Negatives, False Positives, and False Negatives, respectively.
Lower BER values denote better results.

)) X 100,

3.5 Detection Evaluation on Benchmarks

In Table 1, we report the comparison results with recent state-
of-the-art (SOTA) methods on the three benchmarks, including
one traditional method: Unary-Pariwise [9] and 13 CNNs-based
methods: FDRNet [52], RCMPNet [27], ECA [2], MTMT [1], DSD
[47], DC-DSPF [43], ADNet [26], DSC [15], BDRAR [51], ST-CGAN
[38], patched-CNN [11], scGAN [28], and stacked-CNN [36]. For
fair comparisons with these SOTA methods, we utilize the provided
pre-trained model or results from authors to obtain the quantitative
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Figure 4: The visual comparison results of different methods on the real shadow scenarios. (a) to (f) are the detection results
from state-of-the-art methods: BDRAR [51], DSC [13], DSD [47], MTMT [1], ECA [2], and FDRNet [52], respectively.

— In addition, we also provide the visual comparison results with
i different SOTA methods in Figure 4. Obviously, our method per-
forms better than the existing shadow detection results. The shad-

Input image ows in the image in the fifth and last row are very similar to the
appearance of the black object, only our method successfully de-
tects the shadows without misjudging. FDRNet still misses par-
tial shadow regions (e.g., first three rows), and there also exist
cases where the non-shadow regions are mistaken. In contrast, our
method could successfully detect more accurate shadow masks with
more fine-grained boundaries. This also indicates the effectiveness
of complementary mechanisms adopted in our method.

Figure 5: Visual comparison results of models with different
configurations. (a) the result of Model-1; (b) the result of
Model-5.

results. For example, we employ the publicly available detection

results provided by authors of ECA [2], not the metric values of their 3.6 Ablation Study

paper. Besides, we also compare our results with four SOTA saliency Analysis of the effectiveness of the complementarity between
object detection methods referring to FDRNet [52]. They were the shadow and non-shadow regions. We compare five models
retrained and tested on the shadow datasets, and the corresponding with the different configurations: (1) Model-1: only utilizing a sin-
evaluation results of these methods can be found in [52]. Obviously, gle decoder to predict shadow masks; (2) Model-2: expanding the
our method performs the best BER scores over SOTA methods number of channels in the decoder of Model-1 to twice the origi-
on the three benchmark datasets. Compared to RCMPNet, which nal setting; (3) Model-3: utilizing two non-interactive decoders to
is the second best-performing method, our method successfully predict both shadow and non-shadow masks; (4) Model-5: utilizing
reduces the BER score by 1.3% on the SBU testing dataset. Note that two interactive decoders with the negative activation technique to
RCMPNet is an ensemble model to predict shadow masks based on predict both shadow and non-shadow masks; (5) Model-6: L;e,,. is
the previous three SOTA methods, which largely demonstrates the added based on the Model-3. In the absence of branch interactions,
effectiveness of our proposed shadow detection framework. the performance of Model-1 and Model-3 is comparable. Moreover,

6722
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Table 1: Quantitative comparison of our method with the
SOTA methods on the three public benchmark datasets for
shadow detection. For each testing dataset, we provide the
BER metric values. The best results are in bold, and | indi-
cates lower is better.

SBU UCF ISTD
Method Year | BER|] BER| BER|
Ours - 2.94 6.73 1.44
Ours-w/o-CRF - 3.02 6.69 1.41
FDRNet [52] 2021 | 3.04 7.28 1.55
RCMPNet [27] | 2021 | 298 675  1.61
ECA [2] 2021 | 593 1071  2.03
MTMT [1] 2020 | 3.15 7.47 1.72
DSD [47] 2019 | 3.45 7.59 2.17
DC-DSPF [41] | 2018 | 4.90  7.90 -
ADNet [26] 2018 | 537 925 -
DSC [15] 2018 | 559 10.54 3.42
BDRAR [51] 2018 | 3.64 7.81 2.69
ST-CGAN [38] | 2018 | 8.14 11.23 3.85
patched-CNN [11] | 2018 | 11.56 - -
scGAN [28] 2017 | 9.10 11.50 4.70
stacked-CNN [36] | 2016 | 11.00 13.00 8.60
Unary-Pariwise [9] | 2011 | 25.03 - -
ITSD [49] 2020 | 500 10.16 2.73
EGNet [45] 2019 | 4.49 9.20 1.85
SRM [39] 2017 | 6.57 12,51  7.92
Amulet [44] 2017 | 6.57 12,51  7.92

with the complementary interaction between two decoders, the
detection performance obviously successfully improves 5.1% on the
SBU testing dataset, as reported in Table 2. The detection perfor-
mance obviously successfully improves by 0.11 on the SBU testing
dataset, which indicates that only increasing the network param-
eters is not as effective as interactive strategies. Compared with
Model-3 and Model-4, L;4., also brings a certain improvement
in shadow detection performance. In Figure 5, we also provide the
visual results of different models to verify the effectiveness of the
proposed complementarity.

Analysis of the Confidence of Predictions. We employ en-
tropy to measure the confidence of predicted results. A lower en-
tropy value denotes higher confidence. However, utilizing the en-
tropy is to measure the confidence of the prediction and not to
measure the accuracy of the prediction. We only compared the
entropy performance with FDRNet [52], which has the closest com-
parable performance to our method. Note that codes of RCMPNet
[27] are not publicly available. As shown in Figure 6, our method
could confidently predict more accurate results. Moreover, we con-
duct the statistics of predictions on the SBU testing dataset among
three models: FDRNet [52], our framework with only a decoder for
detecting shadow regions, and our default framework. Obviously,
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Table 2: Ablation study of the components used in our frame-
work on the SBU and ISTD testing dataset. SD: Single Decoder;
DD: Dual Decoder; DC: Direct Concatenation interaction
strategy; NAT: Negative Activation Technique interaction
strategy.

Models ‘ Setting ‘ M
SBU  ISTD
Model-1 | SD 3.33 1.72
Model-2 | SD w double channels 3.25 1.64
Model-3 | DD w/o interaction 3.31 1.69
Model-4 | DD + DC 3.19 1.65
Model-5 | DD + NAT 3.14 1.61
Model-6 | DD + NAT+ L;gon. 310 156
Model-7 | DD + NAT+ Ligen, + L€ 2.99 147
Model-8 | DD + NAT+ Ljgep, + LO4¢" 3.01 1.48
Ours | DD + NAT+ Ljgep, + LT+ LO4IT | 294 1.44

the mean entropy values of our method are less than half that of
FDRNet. Meanwhile, the statistical results also demonstrate that
the confidence of the prediction results could be improved under
the interaction of two decoders.

Analysis of the Interaction Strategy. In our default frame-
work, we introduce the negative activation technique (NAT) as the
interaction strategy between two decoders. Here, we further inves-
tigate another straightforward manner to achieve the interaction
between features of two decoders, which is to concatenate features
along the channel dimension. From the results reported in Table 2,
we find that adopting the NAT performs better than the straight-
forward concatenation manner. In our framework, NAT retains the
deactivated features of one branch and delivers them to another
complementary branch, and vice versa. This interaction strategy
allows one branch to utilize the deactivated features of the other
branch, thereby achieving complementarity at the feature level. On
the contrary, these deactivated features are abandoned in the direct
concatenation strategy, leading to suboptimal performance.

Analysis of the effectiveness of the complementary re-
quirements of shadow detection. The complementary require-
ments of shadow detection are implemented by two complementary
discriminators. Therefore, we conduct experiments to verify the
effects of these two discriminators Djppner and Doyter. In Table 2,
we provide the shadow detection performance when we remove the
Dinner and Doyter and corresponding discriminative losses. With
the help of the complementary discriminators, the BER value is
almost reduced by 0.16 on the SBU dataset.

Furthermore, we take the inner discriminator Djpper to inves-
tigate its corresponding discriminative capability. Dipper is de-
signed to distinguish whether the detection shadow results miss any
shadow regions to meet the requirement of shadow detection. As
shown in Figure 7, we feed Djpper three types of shadow masks: Mg,
MSD , and MS‘S. We find Djnper could distinguish the result misses
partial shadow regions based on the visualizations of CAM [48].
Regardless of whether the input masks miss the shadow area or
not, the feature responses of Djpner appear to be quite different.
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Figure 6: Shadow detection results with the corresponding
entropy maps, which demonstrate our method could confi-
dently predict more accurate shadow locations. (a) and (b)
are the estimated results from FDRNet [52] and ours; (c) and
(d) are the corresponding entropy map of (a) and (b); (e) is
the mean entropy map statistics on SBU dataset [36] (from
left to right are: mean entropy values of FDRNet, our frame-
work with only single decoder for shadow detection, and our
default framework).

Figure 7: Feature map visualization of the discriminator
Dinner with different masks as inputs using class activation
mapping (CAM) [48]. The different inputs are: the GT shadow
mask Mg, the dilated GT shadow mask MSD , and the eroded
GT shadow mask M. Note that M2 never participated in the
training of Djuper, but the visualization result is consistent
with the result of M, which means that D, could better
distinguish whether missing shadow regions.

Analysis of the Number of Features Interactions, As re-
ported in Table 3, we conduct experiments to verify the effects
of the number of interactions between the decoders. Because we
conduct the interactions of the two decoders after the basic block
of each branch, the number of interactions is also the same as the
number of Resblocks [10] adopted in our framework. It reaches the
lowest BER value when the number of interactions is 4. Therefore,
we empirically set the number of interactions to 4 as the default
setting.

Analysis of the Parameters and Inference Time. To verify
the effectiveness and efficiency of our method, we also compare the
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Table 3: Ablation study of numbers of features interaction
on the SBU dataset.

Interaction Numbers‘ 1 2 3 4 5 6
BER | ‘3.06 3.03 298 294 296 299

Table 4: The network parameters and average inference time
of different shadow detection methods. The average infer-
ence times are obtained with the resolution of 416 x 416 on
the 1080Ti GPU device.

Methods Parameters(M: 10°) | Average Inference Time (ms)
BADRA [51] 42.46 96.73
DSD [47] 58.16 71.32
MTMT [1] 44.13 57.08

RCMPNet [27] - >225.13 (96.73 + 71.32 + 57.08)
ECA [2] 157.76 92.82
FDRNet [52] 10.77 29.74
Ours 10.95 28.31

parameters and average inference times. For the inference time, we
repeatedly ran different SOTA models on images with a resolution
of 416 X416 100 times to obtain the average inference time. Since
the ensemble strategy of RCMPNet needs to be implemented based
on the results of the previous shadow detection methods (MTMT,
DSDNet, and BARAR), it often requires a large computational cost.
However, the source codes of RCMPNet are not publicly available,
we provide comparisons of network parameters and the average
inference time with these previous methods in Table 4. Obviously,
our method is almost 8 times faster in terms of inference time
compared with RCMPNet.

4 CONCLUSION

In our paper, we develop a novel framework for shadow detec-
tion, which investigates and exploits the complementary mecha-
nisms contained in this specific task. Therefore, our framework
consists of two key components that correspond to the two investi-
gated complementarities, including the mutual complementarity be-
tween the shadow regions and their non-shadow counterparts, and
the complementary requirements for shadow detection. Further-
more, we conduct comprehensive experiments and visualizations
to demonstrate the effectiveness of two explored complementary
mechanisms. Moreover, our method achieves superior performance
against the existing state-of-the-art shadow detection methods with
faster inference speed and smaller network parameters.
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