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ABSTRACT
Rain removal is a vital and highly ill-posed low-level vision task.
While currently existing deep convolutional neural networks (CNNs)
based image de-raining methods have achieved remarkable results,
they still possess apparent shortcomings: First, most of the CNNs
based models are lack of interpretability. Second, these models are
not embedded with physical structures of rain streaks and back-
ground images. Third, they omit useful information in the back-
ground images. These deficiencies result in unsatisfied de-raining
results in some sophisticated scenarios. To solve the above prob-
lems, we propose a Deep Dual Convolutional Dictionary Learning
Network (DDCDNet) for these specific tasks. We firstly propose a
new dual dictionary learning objective function, and then unfold it
into the form of neural networks to learn prior knowledge from the
data automatically. This network tries to learn the rain-streaks layer
and the clean background using two dictionary learning networks
instead of merely predicting the rain-streaks layer like most of the
de-raining methods. To further increase the interpretability and
generalization capability, we add sparsity and adaptive dictionary to
our network to generate dynamic dictionary for each image based
on content. Experimental results reveal that our model possesses
outstanding de-raining ability on both synthetic and real-world
data sets in terms of PSNR and SSIM as well as visual appearance.
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1 INTRODUCTION
Rainy day is a common weather in our daily life, the presence
of rain streaks would exert negative effects on many multimedia
tasks like face-recognition, human–computer interaction, object
detection, etc. To mitigate this issue, numerous de-raining methods
have been raised. Those methods can be roughly summarized into
two categories: model-driven and data-driven methods. Model-
driven de-raining methods need complex handcrafted priors [12,
16, 26, 27], which have deficiencies like time-consuming and model-
insufficiency. While data-driven deep learning based methods are
able to extract the meaningful information from the rain images
and remove the rain streaks easier [8, 9, 11, 22–25, 28, 30, 35, 38,
41, 44]. However, substantial numbers of networks are end-to-end
learning, leading to the whole network merely looks like a black
box. Moreover, many de-raining methods [25, 35, 47] use the prior
knowledge that the original image O is equal to the background
layer B plus the rain-stripe layer R:

O = B + R. (1)

Based on this equation, those methods directly predict R instead
of B since the amount of information in the rain-streaks layer R
is sparser than the background layer B, thus making the whole
network easier to converge. In general, Eq. (1) is an essential pri-
ori estimation, and the methods above work barely satisfactory
when the rain streaks are sparse. However, those methods omit the
useful information in B. As the rain streaks become denser, it will
cover large parts of contents in the background layer. Since the
information in the R is monotonous, the increment of information
in R can not compensate for the lost content in B. This makes
the original ill-posed problem more difficult to handle, resulting in
unsatisfactory de-raining results.

To alleviate the aforementioned problems, we argue to treat the
information in R and B equally by adopting a dual dictionary un-
folding network for the specific image de-raining. First, we design
a simple network to initialize the background B and rain layer R.
Second, our model uses two dictionary learning models to predictR
and B respectively. Each dictionary model is composed of two deep
unfolding models with sparse coding and adaptive dictionaries.
Moreover, our unfolding model has closed-form solutions for both
dictionaries and sparse encoding. In this way, our de-raining net-
work has the capability to precisely generate dynamic dictionary
and sparse coefficient individually. The detailed model structure
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will be introduced in the methodology part. The main contributions
of this paper are summarized as follows:

• We propose a model called deep dual convolutional dictio-
nary network (DDCDNet) to learn the knowledge of rain-
streaks layer and background respectively.

• DDCDNet learns the prior from the training data through
unfolding process, overcoming the poor interpretability and
short-comings of handcrafted priors.

• Extensive experiment results show that our DDCDNet has
achieved the state-of-the-art methods on both synthetic and
real-world data sets. Especially under heavy rain situations,
our DDCDNet not only restore fine textures from damaged
picture but also improve the PSNR more than 0.7dB com-
pared with the previous best model [37].

2 RELATEDWORK
2.1 Single image de-raining
In the past decades, numerous promising de-raining methods have
been raised. These methods have promoted the de-raining task to
a great extent, which can be roughly divided into two categories.
Traditional methods. Traditional rain removal methods usually
need us to manually construct a large number of priors. These
methods focus on the physical structure of the rain streaks as well
as the background image. Kang et al. [16] propose a method to
split one image into high-frequency and low-frequency parts by
using a bilateral layer (MCA). Luo et al. [27] manage to split the
background layer and rain-streaks layer by applying highly dis-
criminative sparse coding (DSC). Li et al. [26] use a model based
on Gaussian mixture model to fit the distribution and the scale of
rain-streaks patterns (GMM). Similarly, using the complementary
representation mechanism of analysis sparse representation (ASR)
and synthesis sparse representation (SSR), Gu et al. [12] propose
a joint convolution analysis and synthesis sparse representation
model (JCAS). Albeit these traditional methods perform well in
some given situations, the generalization of these methods leave
much to be desired. Especially, when the rain-streaks layer does
not meet the prior of these models, the removal of rain streaks will
be insufficient or excessive.
Deep learning methods. Recently, the data-driven deep learning
methods become dominant in high-level [5, 14] and low-level vi-
sion tasks [13, 29, 31, 42]. Thanks to the powerful feature extraction
ability of deep convolutional neural networks (CNNs), we are able
to witness the rapid development of this field. Fu et al. [10] is the
first to introduce residual neural networks into de-raining task. Res-
can [25] use the dilation convolution and recurrent neural networks
(RNNs) to repeatedly consider the relationship between contextual
information among different de-raining stages. Li et al. [22] intro-
duce a non-local encoder-decoder block to understand the abstract
feature representation in the rain-streaks layer. JORDER-E [41]
propose a model that uses a rain pattern binary mask to mark the
location area of rain spots, which can represent the superposition
of rain patterns of different shapes and directions. They also raise
two new synthesized data sets as a baseline for de-raining. Ren et
al. [30] design a progressive de-rain network (PReNet) by unfolding
several Resblocks and long short term networks (LSTMs). Wang et
al. [38] propose a spatial attention-based image de-raining network

using high-quality real data sets and a method to obtain rain-free
images from a series of real rain images. DCSFN [35] propose a
cross-scale network to fuse features by using inner-scale connection
blocks. DRDnet [7] adopt two-sub parallel networks Rain Residual
Network (RRN) and Detail Repair Network (DRN) for extracting
rain streaks and image details separately. Zhang et al. [47] pro-
pose a model based on self-attention, which also merges adaptive
pyramid structure to reduce the computational burden and obtains
multi-attention features by using Haar wavelet transform. RCD-
net [36] propose a model-driven deep learning de-raining method.
They use a set of rain kernels to extract the rain layer feature map,
then applying the proximal gradient descent to update the network.
Wang et al. [37] propose a rain streaks generative model, which
could generate numerous similar training pairs. It can be embedded
in other de-raining methods to retain better performance.

2.2 Deep unfolding
Different from traditional end-to-end models, deep unfolding meth-
ods are devoted to hold the strong learning capability while retain-
ing good interpretability. The deep unfolding methods date back to
decades ago [32, 34]. Since then, certain numbers of algorithms(e.g.,
iterative shrinkage-threshold [17], half-quardratic splitting [2, 46]
and primal-dual [1]) have been unfolded for different vision tasks
such as image de-blurring [20, 33], image de-noising [6, 21, 48], im-
age super-resolution [46] and image de-mosaicking [19]. Although
deep unfolding has added interpretability to deep learning model,
they also introduce some drawbacks. First, the lack of CNNs would
lower the performance when solving the sub-problems. Second,
many deep unfolding methods do not have a closed-form solution,
which may result in non-convergence of the whole network [46].
Third, most of the deep unfolding methods assume dictionaries as
fixed patterns, which decrease the adaptability of image represen-
tation. Therefore, a model that surmounts the overall drawbacks is
needed.

3 METHODOLOGY
In general, we often split one rainy image as the combination of
rain-streaks layer R and background layer B as Eq.(1) shows. Most
of the de-raining networks focus on predicting R rather than B
because the information in rain layer R is sparser than B. However,
as the rain streaks become denser, the streaks will cover quite a lot
of background information. Reconstructing clear background from
the rain image will become more difficult because the information
volume in R is quite limited.

3.1 Overall Architecture
To avert the disappointments above, we need to make use of the
information in B to help us restore more detailed textures. So, we
design a Deep Dual Convolutional Dictionary Learning Network
to extract features from both rain layer and background layer. As
shown in Figure 1, the whole network is composed of T stages,
each stage contains two dictionary learning blocks.

3.2 Dictionary Learning for R and D
Inspired by K-SVD [3], one picture Y can be decomposed as the mul-
tiple of dictionary matrix D and sparse encoding matrix X, where

6637



Learning Dual Convolutional Dictionaries for Image De-raining MM ’22, October 10–14, 2022, Lisboa, Portugal

Figure 1: The proposed network. The network consists of T stages with two dictionary learning models. At each stage, our
network firstly predict R then predict B successively.

Figure 2: The architecture of our DDCDNet in one stage.

Figure 3: The detailed architecture of our learning blocks.
Each dictionary learning block consists four sub blocks,
which enabling the unfolding methods to solve the equa-
tions iteratively.

the D stores the feature in Y and X represents how these features
combined. In this way, the rain-streaks layer and background layer
can be modeled as:

R =

𝑇∑︁
𝑖=1

K(𝑖)
R ⊗ C(𝑖)

R , (2)

B =

𝑇∑︁
𝑖=1

K(𝑖)
B ⊗ C(𝑖)

B . (3)

Figure 4: Architectures of sub blocks in dictionary learning.

In Eq.(1) and Eq.(2) the R, B ∈ R𝐻×𝑊 ×3, and K(𝑖)
R , K(𝑖)

B represent
the dictionary of R and B in the i th stage; C(𝑖)

R , C(𝑖)
B represent the

sparse encoding of R and B in the i th stage. Now, our Eq.(1) can
be rewritten as:

O =

𝑇∑︁
𝑖=1

K(𝑖)
R ⊗ C(𝑖)

R +
𝑇∑︁
𝑖=1

K(𝑖)
B ⊗ C(𝑖)

B . (4)

We notice that our model can be divided into two sub optimization
problems. Previous dictionary learning for de-raining task usually
assumes the rain dictionaries or background dictionaries as fixed
patterns, and this will lead to the whole model lack of generaliza-
tion ability and loss of image details. Therefore, we add adaptive
dictionary item for each stage and use the powerful learning ability
of deep learning to extract the deep prior for each image. After
applying the adaptive dictionary D, our optimization functions can
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be written as:

min
KR,CR

1
2𝜎2

∥O − B −
𝑇∑︁
𝑖=1

K(𝑖)
R ⊗ C(𝑖)

R ∥22 + 𝜆CR𝜓 (KR) + 𝜆KR𝜙 (CR).

(5)

min
KB,CB

1
2𝜎2

∥B −
𝑇∑︁
𝑖=1

K(𝑖)
B ⊗ C(𝑖)

B ∥22 + 𝜆CB𝜓 (KB) + 𝜆KB𝜙 (CB). (6)

For simplicity, we firstly focus on optimizing Eq.(6). In order to
solve this bi-criteria optimization equation, we unfold CB. The
optimization model of CB is (we omit the superscript of 𝑖 and the
summation notation for simpler expression):

min
KB,CB

∥B − KB ⊗ CB∥22 + 𝜆CB𝜓 (CB), (7)

Eq.(7) can be decomposed as fidelity item and penalty item. Then we
follow [48] and utilize Half Quadratic Splitting (HQS) algorithm [15]
to Eq.(7) due to its simplicity and fast convergence. By introducing
an auxiliary variable TB and penalty parameter 𝜇𝐵 , optimizing
Eq.(7) can be addressed by solving the following sub-problems for
CB and TB as shown in Eq.(8) and Eq.(9):

TB = 𝑎𝑟𝑔min
TB

∥B − KB ⊗ TB∥22 + 𝜇B𝜎
2∥TB − CB∥22, (8)

CB = 𝑎𝑟𝑔min
CB

𝜇B
2
𝜙 ∥TB − CB∥22 + 𝜆CB𝜓 (CB) . (9)

Then we perform the same unfolding operation on KB, we will get
the similar iterative equations:

ZB = 𝑎𝑟𝑔min
ZB

∥B − ZB ⊗ CB∥22 + 𝛾B𝜎
2∥ZB − KB∥22, (10)

KB = 𝑎𝑟𝑔min
KB

𝜇B
2
𝜙 ∥ZB − KB∥22 + 𝜆KB𝜓 (KB) . (11)

We design four sub-blocks to solve Eq.(8-11). According to [4], by
taking the derivatives of the Eq.(8) and Eq.(10), these equations
have closed form solutions:

TB = F −1
{
(KB

HKB + 𝜇B𝜎
2I)−1 (KB

HB + 𝜇B𝜎
2CB)

}
, (12)

ZB = F −1
{
(CB

HCB + 𝛾B𝜎2I)−1 (CB
HB + 𝛾B𝜎2KB)

}
. (13)

In these equations, F stands for the Fast Fourier Transform (FFT);
F −1 is the inverse Fast Fourier Transform (IFFT); KB = F (KB)
and KH

B denotes complex conjugate of KB . Eq.(9) and Eq.(11) are
complex convex optimization problems, which are hard and time-
consuming to find closed-form solutions. In this case we adopt
two neural networks 𝑆𝑢𝑏TB and 𝑆𝑢𝑏ZB to accomplish this process.
The structures of 𝑆𝑢𝑏TB and 𝑆𝑢𝑏ZB are shown in Figure 3. The
𝑆𝑢𝑏TB is an encoder-decoder structure. The convolution layers
in encoder structure have 32, 64, 96 and 128 channels and each
block is connected with four residual layers. Since the background
dictionaries contain much less spatial information compared with
sparse encoding layers, we adopt 3 residual-layers to extract the
features from background dictionaries. The unfolding methods for
Eq.(5) closely resemble with the previous steps. It should be noticed
that the information in R is less than B, so we change the channel
numbers of the convolution layers in 𝑆𝑢𝑏TR to 32, 48, 64 and 96.

Figure 5: Visualization of the background image (with PSNR
| SSIM) and rain-streaks image at different learning stages.

Figure 6: Visualization of learned feature maps in back-
ground layer. It is obvious to find that our network is able to
highlight the elements in the background.

4 EXPERIMENTS
4.1 Implementation Details
All the experiments are implemented on a NVIDIA GeForce GTX
1080Ti GPU for 800 epochs. We use Pytorch1.7 and Adam gradient
descent [18] with a batch size of 10 to train our network. All the
training examples are cropped into 128 × 128 patch pairs with
random horizontal flipping. We set the initial learning rate of 6e-4
and divided by 2 every 200 epochs.

4.2 Loss Function
Training loss. It has been proved that the SSIM loss is more suitable
than L1 (MAE) and L2 (MSE) loss for de-raining task [30]. We adopt
the progressive multi-stage SSIM loss for the rain-layer R and
background B:

L = −
𝑇∑︁
𝑖=1

𝛼𝑖 · 𝑆𝑆𝐼𝑀 (Bgt,B(i)) −
𝑇∑︁
𝑖=1

𝛽𝑖 · 𝑆𝑆𝐼𝑀 (O−Bgt,R(i)), (14)

where 𝛼𝑖 and 𝛽𝑖 are equal to 𝑖
𝑇
. More details will be shown in the

ablation study.

4.3 Model Visualization
Stage visualization.We visually show the background images and
rain-streaks layers under different predicting stages. The first and
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Figure 7: Visualization of learned feature maps in rain-
streaks layer. Our network could capture the different com-
ponents of the rain-streaks. The images are better observed
by zooming in on screen.

Figure 8: Visualization of adaptive dictionaries for rain-
streaks and background images.

Figure 9: De-raining results on image 99 in Rain200H for
ablation study.

Table 1: Ablation study on different dictionary learningmeth-
ods.When applying single dictionary learning onR,we adopt
a U-net structure for predicting B.

Version Name PSNR/SSIM

1 Single dictionary learning on R 29.86/90.29
2 Single dictionary learning on B 30.75/91.21
3 Dual dictionary learning 31.48/92.88

Table 2: Ablation study on adaptive dictionaries in different
learning blocks

Version Name PSNR/SSIM

1 w/o adaptive D in R 30.74/92.12
2 w/o adaptive D in B 30.68/91.96
3 w/o adaptive D in two stage 30.15/91.22

Table 3: Analysis of different stage number based on PSNR
and SSIM.

Stage No. T=1 T=2 T=3 T=4 T=5

PSNR 28.81 28.9 30.17 31.48 30.62
SSIM 0.8818 0.8901 0.9077 0.9288 0.9154

third rows in Figure 5 are the prediction results of two images from
data sets Rain200H and Rain200L. The second and fourth rows are
the rain-streaks layers of the two images respectively. It is obvious
to find that with the increase of the predicting stage T, the B(T)

contains less rain streaks and the R(T) preserves more rain streaks
and fewer image contents.
Feature map and adaptive dictionary visualization.We visu-
alize the feature maps of the background images and rain-streaks
layers learned by our dual-dictionary model. As shown in Figure 6,
our model is able to highlight the components in the background,
i.e., the buildings, walls and outline of the sky in row 1; sculpture,
tower and the buildings in the distance in row 2. As to the feature
maps for rain-layers in Figure 7, our model can also capture the
different features in rain-streaks layers, i.e., it is obvious to find that
the feature-map 11 records the rain streaks from left to right while
feature-map 29 records the rain streaks in the opposite direction. At
the same time, it should be noticed that the feature-map 1 records
the intersection points of rain streaks from different directions and
feature-map 20 denotes the overall architecture of the rain streaks.
To validate the adaptive dictionary in our dual-dictionary model,
we also visualize the dictionaries for B and R as shown in Figure 8.
It can be seen that our DDCDNet can generate different dictionary
patterns according to the contents of B and R, enabling our final
results to retain more detailed textures.
Model generalization visualization. It has been verified that
our DDCDNet is able to generate adaptive dictionary kernels for
different images. So we testify the generalization ability of our
model. The model is trained on Rain200H without any fine-tone
process. As shown in Figure 10, our DDCDNet could capture the
features of the diverse rain-layers and the extracted rain-layers
contain fewer background information even the training/testing
domain mismatch with each other.

4.4 Ablation Study
In this section, we demonstrate the ablation study in Table (1-3) to
explore the effects of different elements in our DDCDNet. All the
experiments are implemented on Rain200H. We perform our abla-
tion study on three sections: dictionary learning strategies, stage
number and loss function.
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Figure 10: Visualization of generalization ability. All the samples are tested with the model trained on Rain200H data set.

Table 4: De-raining performance on Rain200H of the proposed DDCDNet with different loss functions. Noticed that when
applying the progressive Multi-Stage loss, the 𝛼𝑖 and 𝛽𝑖 are set to 𝑖

𝑇

Version Name Expression of Loss Function PSNR/SSIM

1 L1 𝐿1(Bgt,B(T)) 29.63/90.6
2 SSIM −𝑆𝑆𝐼𝑀 (Bgt,B(T)) 31.27/92.74
3 Multi-Stage L1

∑𝑇
𝑖=1 0.1 · 𝐿1(Bgt,B(i)) +∑𝑇

𝑖=1 0.1 · 𝐿1(O − Bgt,R(i)) 29.56/90.85
4 Multi-Stage SSIM −∑𝑇

𝑖=1 0.1 · 𝑆𝑆𝐼𝑀 (Bgt,B(i)) −∑𝑇
𝑖=1 0.1 · 𝑆𝑆𝐼𝑀 (O − Bgt,R(i)) 31.3/92.81

5 Progressive Multi-Stage L1
∑𝑇
𝑖=1 𝛼𝑖 · 𝐿1(Bgt,B(i)) +∑𝑇

𝑖=1 𝛽𝑖 · 𝐿1(O − Bgt,R(i)) 29.82/90.93
6 Progressive Multi-Stage SSIM −∑𝑇

𝑖=1 𝛼𝑖 · 𝑆𝑆𝐼𝑀 (Bgt,B(i)) −∑𝑇
𝑖=1 𝛽𝑖 · 𝑆𝑆𝐼𝑀 (O − Bgt,R(i)) 31.48/92.88

Table 5: Comparison of average PSNR and SSIM results on six common benchmark data sets. The 1𝑠𝑡 and 2𝑛𝑑 are highlighted
with boldface and underline.

Methods Test12 Rain200H Rain200L Rain1200 Rain800 SPA-Data

DSC 30.07/0.8664 14.73/0.3815 27.16/0.8663 24.24/0.8279 22.61/0.7530 34.95/0.9416
GMM 32.14/0.9145 14.50/0.4164 28.66/0.8652 25.81/0.8344 25.71/0.8020 34.30/0.9428
JCAS 33.10/0.9302 14.69/0.4999 31.42/0.9173 25.16/0.8509 26.32/0.8375 34.95/0.9453

RESCAN 36.54/0.9568 26.75/0.8353 36.09/0.9697 33.38/0.9417 26.58/0.8726 38.11/0.9707
SPANet 35.92/0.9582 26.27/0.8666 35.79/0.9653 33.04/0.9489 27.81/0.8927 40.24/0.9811
DRDNet 36.27/0.9414 29.02/0.8849 35.19/0.9751 33.73/0.9232 28.21/0.901 38.72/0.9737
PReNet 36.61/0.9604 29.04/0.8991 37.80/0.9814 33.17/0.9481 27.06/0.9026 40.16/0.9816

JORDER-E 36.73/0.9634 29.35/0.8903 39.12/0.9840 34.05/0.9308 28.13/0.8996 40.78/0.9801
DCSFN 36.52/0.9599 29.46/0.8932 38.86/0.9840 34.19/0.9615 28.53/0.9034 40.98/0.9805
RCDNet 37.71/0.9649 30.24/0.9098 39.87/0.9875 34.08/0.9532 28.59/0.9137 41.47/0.9834
Multifocal 37.74/0.9712 30.17/0.9060 40.02/0.9870 34.89/0.9612 28.54/0.9082 -/-

VRGNet(JORDER+) 37.81/0.9716 30.73/0.9121 38.64/0.9843 34.24/0.9560 29.03/0.9134 42.54/0.9840
Ours 37.86/0.9757 31.48/0.9288 40.08/0.9889 35.08/0.9645 29.57/0.9165 43.75/0.9872

Different dictionary learning strategies. In order to emphasize
the effectiveness of dual dictionary learning, we adopt single dictio-
nary learning on R and B. As shown in Table 1, the dual dictionary
will improve the PSNR index around 1.5dB. It should be noticed
that when applying single dictionary learning on R, we perform
an encoder-decoder structure with the same channel number we

mentioned before to predict B. The single dictionary learning on
B is demonstrated in the same way. We visualize an example in
Figure 9 for demonstration. Meanwhile, to verify the efficacy of
adpative dictionaries, we conduct two experiments to explore it.
Results are shown in the Table 2.
Different stage number. We select the stage number from 1 to 5.
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Figure 11: De-raining results on image 40 in Rain200H.

Figure 12: De-raining results on image 63 in Rain200H.

It can be seen in Table 3 that the PSNR and SSIM [39] indexes rise
with the increase of stage number firstly. However, when the stage
number is larger than 4, the performance decreases slightly. We
adopt the stage number equal to 4 throughout the whole process
since increasing the stage number would exert negative influence
on gradient back-propagation.
Loss function. In this section, we demonstrate six different forms
to further explore the proper loss function. As shown in Table 4,
adopting the SSIM loss will increase the PSNR index for nearly

1.5dB compared with the L1 loss. After using the muti-stage and
progressive multi-stage loss, the performance will increase 0.05dB
and 0.2dB.

4.5 Experiments on Synthetic data sets
We evaluate our DDCDnet on five representative synthetic data sets:
Test12, Rain200H, Rain200L, Rain800 and Rain1200. Those five data
sets are gennerated by applying different strategies. The Test12 [26]
only contains 12 light rain images. Rain200L and Rain200H have
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Figure 13: De-raining results on image 229 in Rain1200.

Figure 14: De-raining results on image 896 in SPA-Data. As
shown in Figure 14, previous de-raining methods fail to re-
move rain streaks and rain-drops while our networks are
able to generate rain-free image.

the same ground truth image. The Rain200L has light rain streaks
while the Rain200H contains demanding extensive rain streaks [41].
Rain800 [45] contains 700 training pairs and 100 testing pairs.
Rain1200 [43] includes 12000 training pairs and 1200 testing pairs.
We use the indexes PSNR and SSIM [39] for the comparison with
previous SOTA methods as evaluating indicator. We compute these
two indicators on luminance (Y) channel [40]. As shown in Table 5,
our model achieves the best overall results. For visualization, we
use examples in Rain200H and Rain1200 for demonstration. For
Rain200H, we select two changeling images, as shown in Figure 11
and Figure 12 , it is obvious that other de-raining methods generate
over-smoothed image, while our DDCDNet could recover more
detailed texture contents. For Rain1200, the de-raining results are

shown in Figure 13, we could find that our model could retain more
imprints on the blackboard compared with other methods. This is
due to the addition of adaptive dynamic dictionary model.

4.6 Experiments on Real-World data set
To validate the peformance of DDCDNet in real-world situations,
we also verify our model on SPA-Data [38]. The SPA-Data contains
638492 training pairs and 1000 testing pairs. As shown in Figure 14,
our network can generate clearer background while retaining more
detail textures. We also achieve best PSNR and SSIM [39] indexes
as shown in the last column of Table 5. These results show that
our DDCDNet achieves a balance between de-raining and texture
preservation.

5 CONCLUSION
In this paper, we introduce a Deep Dual Convolutional Dictionary
Learning Network for rain removal task. We propose two dictionary
learning models to capture the rain-streaks layer and background
layer separately. By applying the unfolding methods and HQS [15]
algorithm, our network is able to generate rain-free image while
retaining interpretability. These two dictionary learning models
are further embedded with adaptive dictionaries, which enable our
network to reconstruct more detailed texture information from
rain images. Combined with these valid components, our DDCD-
Net achieves outstanding results on several common benchmarks
compared with previous state-of-the-art de-raining methods.
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