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ABSTRACT
Image forgery localization, which aims to find suspicious regions
tampered with splicing, copy-move or removal manipulations, has
attracted increasing attention. Existing image forgery localization
methods have made great progress on public datasets. However,
these methods suffer a severe performance drop when the forged
images are JPEG compressed, which is widely applied in social me-
dia transmission. To tackle this issue, we propose a wavelet-based
compression representation learning scheme for the specific JPEG-
resistant image forgery localization. Specifically, to improve the
performance against JPEG compression, we first learn the abstract
representations to distinguish various compression levels through
wavelet integrated contrastive learning strategy. Then, based on the
learned representations, we introduce a JPEG compression-aware
image forgery localization network to flexibly handle forged im-
ages compressed with various JPEG quality factors. Moreover, a
boundary correction branch is designed to alleviate the edge arti-
facts caused by JPEG compression. Extensive experiments demon-
strate the superiority of our method to existing state-of-the-art
approaches, not only on standard datasets, but also on the JPEG
forged images with multiple compression quality factors.

CCS CONCEPTS
• Applied computing → Computer forensics; • Computing
methodologies → Computer vision.

KEYWORDS
image forgery localization, JPEG compression, contrastive learning,
wavelet transform
∗Xueyang Fu is the corresponding author (xyfu@ustc.edu.cn). This work was sup-
ported by the National Key R&D Program of China under Grant 2020AAA0105702,
the National Natural Science Foundation of China (NSFC) under Grants U19B2038
and 61901433, the University Synergy Innovation Program of Anhui Province under
Grants GXXT-2019-025, the Fundamental Research Funds for the Central Universities
under Grant WK2100000024, and the USTC Research Funds of the Double First-Class
Initiative under Grant YD2100002003.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3547749

ACM Reference Format:
Menglu Wang, Xueyang Fu, Jiawei Liu, and Zheng-Jun Zha. 2022. JPEG
Compression-aware Image Forgery Localization. In Proceedings of the 30th
ACM International Conference on Multimedia (MM ’22), October 10–14, 2022,
Lisboa, Portugal. ACM, Lisboa, Portugal, 9 pages. https://doi.org/10.1145/
3503161.3547749

1 INTRODUCTION
With the development of image editing techniques and the popular-
ization of various editing software, image forgery becomes easier
and has been widely used on social media, leading to a decline in the
credibility of image information and negative effects on the daily
life. The most common manipulations are splicing (copying regions
from an authentic image and pasting them to other images), copy-
move (copying and pasting regions within the same images) and
removal (eliminating regions from an authentic image). Therefore,
image forgery localization (IFL) attracts increasing attention, which
aims to locate suspicious regions on the tampered images (splic-
ing, copy-move, removal). While the tampered images are often
compressed during the transmission and re-posting of real social
media, which brings multiple degradation artifacts such as block-
ing artifacts, ringing effects, blurring and color distortion. These
complex compression artifacts overlap with the image tampering
traces, making it more difficult to locate the subtle tampering traces.
Although IFL approaches have made great progress on high-quality
datasets, these methods suffer a severe performance drop when
the forged images are JPEG compressed. Therefore, the trained
models are difficult to generalize to JPEG compressed images in
real social media scenarios. In this paper, we consider the JPEG
compressed image forgery localization (JPEG-IFL) on the common
manipulations (splicing, copy-move, and removal), which aims to
locate the tampered regions on JPEG compressed forged images.

Traditional IFL methods rely on the hand-crafted features to
figure out the different statistical distribution between tampered re-
gions and the authentic regions [9, 22, 44]. In recent years, due to the
powerful representation ability, deep learning based methods have
been explored to directly learn a nonlinear mapping from forged
images to its corresponding masks. For example, ManTra-Net [38]
detects forged pixels by identifying local anomalous features in an
end-to-end way. MVSS-Net [4] learns a multi-view feature with
multi-scale supervised networks to jointly exploit the noise view
and the boundary artifacts. However, these learning-based methods
suffer a severe performance drop when the forged images are JPEG
compressed, which is widely applied in social media transmission.
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Figure 1: The JPEG image forgery localization results under
different compression quality factors. As the quality factor
(QF) decreases, the masks predicted by the latest approach
MVSS [4] are getting blurry. While our network can predict
accurate masks under multiple compression quality factors.

As shown in Figure 1, when the JPEG compression quality factor
(QF) decreases, the masks predicted by MVSS [4] are getting blurry.
Especially in QF=60 and QF=50, a lot of artifacts appear and the
method is almost incapable of predicting the accurate tampered
area masks. Recently, Rao te al. [27] adopts the domain adapta-
tion strategy to alleviate JPEG compression problem without fully
exploring the JPEG compression information, resulting in limited
performance. Therefore, it is emergency to explore an efficient
method to deal with JPEG compressed image forgery localization.

Inspired by the success of degradation representation learning in
super resolution [33], we propose a newwavelet-based compression
representation learning scheme for the specific JPEG image forgery
localization (JPEG-IFL). The motivation of our method is that the
compression representations fully characterize the information of
different compression degrees, which can be utilized as an impor-
tant cue for JPEG-IFL. Since JPEG compression is highly correlated
with the frequency domain, a wavelet-based representation learner
is firstly introduced to obtain compression representations. Then,
a JPEG compression-aware image forgery localization network
is designed to leverage the learned representations. Specifically,
we decompose the forged image into different frequencies with
wavelet transformation to extract distinguishable compression rep-
resentations through contrastive learning strategy. Based on the
learned representations, we introduce a JPEG compression-aware
IFL network to flexibly handle forged images with various JPEG
quality factors. Moreover, a boundary correction branch is further
designed to alleviate the edge artifacts caused by JPEG compression.
To our knowledge, this is the first attempt to explicitly utilize degra-
dation information (low-level representations) on image forgery
localization (high-level vision task). Extensive experiments shows
the effectiveness of our method on IFL as well as JPEG-IFL.

Contributions of this work can be summarized as follows:

• We propose a general framework for JPEG image forgery
localization (JPEG-IFL) by taking compression representa-
tions into consideration. The compression quality factors,
which are ignored in existing methods, are fully utilized to
help design algorithms for the specific JPEG-IFL problem.

• Wedesign awavelet-based encoder to extract distinguishable
compression representations through contrastive learning
strategy. Based on the learned representations, we introduce
a JPEG compression-aware IFL network to flexibly handle
forged images compressed with various JPEG quality factors.

• We incorporate the boundary correction module into our
JPEG-IFL network, which can effectively alleviate the edge
artifacts caused by JPEG compression.

• Extensive experimental results prove superior performance
of our approach compared with the state-of-the-art methods,
not only on standard IFL datasets, but also on the JPEG forged
images with multiple compression quality factors.

2 RELATEDWORK
Image forgery localization (IFL) has been an increasingly important
research topic in computer vision community. Tremendousmethods
have been proposed in this area. These methods can be divided into
two categories, i.e., traditional methods [5, 9, 22, 24, 32, 44, 45] and
deep-learning based methods [4, 6, 14, 27–29, 37–40, 47].

2.1 Hand-crafted Feature Based IFL Approaches
Traditional methods rely on the hand-crafted feature to figure out
the different statistical distribution between tampered regions and
the authentic regions [9, 22, 44]. Relying on the statistics of pristine
natural images, some works [24, 44] detect tempered region based
on the deviation. For example, sparse descriptors [24] obtain a high
accuracy for copy-move [5]. More complex dense descriptors [30]
could achieve better performance. A feature-based procedure [44]
is proposed to tell apart regions subject to median filtering from
region treated by other forms of processing. Steganalysis rich model
[9] (SRM) works in a similar manner by digging out the inconsistent
local noise variances between different regions within an authentic
image. While blind local noise estimation methods [23, 25] expose
region splicing by revealing inconsistencies in local noise levels.
On the other hand, tampering possibility maps [22], which are
obtained by adjusting statistical feature-based detector and copy-
move forgery detector, are integrated to improve the performance of
forgery localization. These hand-crafted methods achieve effective
forgery localization before the era of deep learning and provide
various enlightening analyses of image forgery localization.

2.2 Deep Learning Based IFL Approaches
The introduction of neural-network-based solutions has brought
significant improvement for image forgery localization. Tremen-
dous architecture designs provide various effective solutions for
image forgery localization. For example, a two-stream network [47]
uses both an RGB stream and a noise stream to learn rich features
for image manipulation detection, where Faster R-CNN [29] is inte-
grated. The multi-task fully convolutional network (MFCN) [31]
is proposed to automatically learn the relevant features for image
forgery localization, which does not require explicit feature extrac-
tion. ManTra-Net [38] is an end-to-end network that performs both
detection and localization without extra preprocessing and post-
processing. MVSS-Net [4] learns a multi-view feature to jointly
exploit the noise view and the boundary artifacts. The architecture
of a two-branch convolutional neural network [28] is presented as
an expressive local descriptor to automatically learn hierarchical
representations. Recently, inspired by the success of transformer,
TransForensics [14] introduces transformers into this area which
captures discriminative representations and obtain high-quality
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Figure 2: The architecture of the Compression Representation Learning Network (CRL-Net). It aims to obtain the compression-
related representations. The CRL-Net consists of three parts: getting patches, wavelet-based compression representation
encoder and contrastive learning strategy. The input patches include query patches (annotated with a yellow box), positive
patch (annotated with a red box) and negative patches (annotated with blue and green boxes), which take compression degree
as division basis. Then, we disentangle patches into multiple level frequency bands to extract compression related features.
Finally, through contrastive learning strategy, the extracted features with the same compression degree are encouraged to be
similar, while the extracted features with different compression degrees are encouraged to be dissimilar.

mask predictions. Aforementioned IFL methods suffer severe per-
formance drops when the forged images are degraded, which will
bring more complex artifacts [17–19, 26, 41]. Particularly, JPEG
compression is widely used in social media. To solve this prob-
lem, the method [8] analyzes the impact of JPEG compression on
forgery task. The domain adaptation network [27] is proposed
to alleviate the domain shift between uncompressed images and
JPEG-agent images, which consists of a Siamese backbone and a
compression approximation network. The method [2] aims to ex-
tract compression-insensitive features from both uncompressed and
compressed forgeries using an adversarial learning strategy. How-
ever, the JPEG compression information is not fully explored and
this method suffers from boundary artifacts caused by compression.

3 METHODOLOGY
The proposed framework consists of the compression representa-
tion learning network and JPEG compression-aware image forgery
localization network, which are illustrated in Figure 2 and Figure 3
respectively. In this section, we firstly present the problem defini-
tion and the overall architecture of the proposed approach. Then
we introduce each component in the following subsections.

3.1 Problem Definition and Overview
As mentioned above, the regular image forgery localization meth-
ods will suffer a severe performance drop when the forged images
are JPEG compressed, which is widely applied in social media trans-
mission. For practical application requirements, we focus on JPEG-
resistant image forgery localization problem. Specifically, we denote
the forged images in the standard datasets as 𝐷 = {𝑑𝑖 }𝑁𝑖=1 and their
corresponding forgery localization masks as𝑀 = {𝑚𝑖 }𝑁𝑖=1, where
𝑁 is the total number of forged images. The forgery process can
be represented as 𝑑𝑖 = 𝐹 (𝑎𝑖 ), where 𝑎𝑖 is the authentic image and
𝐹 is a tampering operation (e.g., splicing, copy-move or removal).

In our setting, we reformulate the forgery process with the con-
sideration of compression as 𝑦𝑖 = 𝐽𝑃𝐸𝐺 (𝑑𝑖 ) = 𝐽𝑃𝐸𝐺 (𝐹 (𝑎𝑖 )). JPEG
compression operation brings complex degradation artifacts such
as blocking artifacts, ringing effects, blurring [11, 12, 34], which are
overlapped with the image tampering traces. That makes it more
difficult to locate the forged area accurately. Therefore, our goal
is to perceive and alleviate the compression artifacts impact so as
to achieve accurate localization. Given a JPEG compressed forged
image 𝑦𝑖 , we aim to design a JPEG-resistant forgery localization
model 𝐺 to predict the forged region mask �̂�𝑖 , which is denoted as
�̂�𝑖 = 𝐺 (𝑦𝑖 ).

To achieve this goal, we propose a novel framework which con-
sists of two components: compression representation learning net-
work (CRL-Net) and JPEG compression-aware image forgery lo-
calization network (CA-IFL), whose architectures are depicted in
Figure 2 and Figure 3, respectively. The CRL-Net aims to extract
representations that are highly correlated with JPEG compression,
which can be utilized as an important cue for the following CA-IFL.
Based on the compression representations, the CA-IFL aims to per-
ceive and alleviate the compression artifacts impact so as to locate
the forged area as accurately as possible. Our model is trained in
two steps. First, to obtain adequate compression representations,
we train a wavelet-based CRL-Net through contrastive learning
strategy, as illustrated in Figure 2. The CRL-Net consists of three
parts: getting patches, wavelet-based compression representation
encoder and contrastive learning strategy. The input patches in-
clude query patches, positive patches and negative patches, which
take compression degree as division basis. Then, since the JPEG
compressed images are highly sensitive in frequency domain, we
use wavelet-based network to extract compression related features
from these patches. Finally, through contrastive learning strategy,
the extracted features with the same compression degree are en-
couraged to be similar, while the different ones are encouraged
to be away from each other. Therefore, the well-trained CRL-Net
can extract corresponding compression representations from JPEG
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Figure 3: The overall architecture of the proposed JPEG Compression-aware Image Forgery Localization network (CA-IFL).
Based on the learned compression representations, we train the CA-IFL network to predict the accurate localization masks for
JPEG compressed forged images. Specifically, the CA-IFL adopts ResBlocks as backbone to extract basic feature. Furthermore,
it introduces two important branches. The first one is the compression-aware branch, including wavelet-based compression
representation encoder and fusion TransBlock. The second one is the boundary correction branch (shown as tandem gray
blocks: EB and CEBs), which aims to alleviate the edge artifacts caused by JPEG compression.

compressed forged images. Second, based on the learned com-
pression representations, we train the CA-IFL network to obtain
accurate forgery localization for JPEG compressed images, as shown
in Figure 3. The CA-IFL consists of two important branches: the
wavelet-based compression representation encoder as mentioned
above and the boundary correction branch, which is designed to
alleviate the edge artifacts caused by JPEG compression. The details
of the CRL-Net and CA-IFL will be discussed below.

3.2 Compression Representation Learning
Network (CRL-Net)

As mentioned above, in the first step, we train the CRL-Net to
obtain the compression representations, which is highly related
with JPEG compression degrees. As illustrated in Figure 2, we utilize
wavelet-based architecture and contrastive learning strategy for
compression representation learning. The specific architecture and
training strategy are described below.

Get patches. We utilize JPEG compressed forged images to get
patches. Given an image patch as the query patch (annotated with
a yellow box in Figure 2). The patches with the same compression
quality factor (QF) are considered as positive patches (annotated
with a red box). We simply take query patch and positive patches
from the same image. Conversely, patches from different QFs are
referred as negative patches (annotated with blue and green boxes).
The CRL-Net takes the three types of patches as input.

Wavelet-based compression representation encoder. The architec-
ture of the encoder is depicted in Figure 2. It takes the query patch,
positive patches and negative patches as input and aims to predict
their corresponding compression representations. Since the com-
pression information is highly sensitive in frequency domain, we
adopt 2D discrete wavelet transform (DWT) to convert image into
frequency domain (as suggested in WaveFill [43]). Specifically, for

the first iteration of the decomposition, we utilize DWT to apply
low-pass and high-pass wavelet filters alternatively along image
columns and rows (followed by downsampling), which produces
4 sub-bands including 𝐿𝐿, 𝐿𝐻 , 𝐻𝐿, and 𝐻𝐻 . Then, for the second
iteration, the 𝐿𝐿 is used to produce 𝐿𝐿2, 𝐿𝐻2, 𝐻𝐿2, and 𝐻𝐻2. The
𝐿𝐿2 is used for the third iteration and so on. Hence, if there are 𝑇
iterations, 3𝑇 + 1 wavelet sub-bands are produced, which include
𝐿𝐿𝑇 , {𝐿𝐻 𝑖 }𝑇

𝑖=1, {𝐻𝐿𝑖 }𝑇
𝑖=1, {𝐻𝐻 𝑖 }𝑇

𝑖=1. Note that the 𝐿𝐿𝑇 captures
low-frequency information, while the 𝐿𝐻 𝑖 , 𝐻𝐿𝑖 and 𝐻𝐻 𝑖 capture
the horizontal, vertical and diagonal high-frequency information.
Particularly, we set 𝑇 = 2 and obtain 7 corresponding sub-bands.
𝐿𝐿2 represents low-frequency information. 𝐿𝐻2, 𝐻𝐿2 and 𝐻𝐻2 are
concatenated in the channel dimension to obtain high-frequency in-
formation at level 2. Similarly, 𝐿𝐻1,𝐻𝐿1 and𝐻𝐻1 are concatenated
to represent high-frequency information at level 1. Then, as shown
in Figure 2, they are fed into the corresponding CNNs to obtain
multi-scale features. These feature are concatenated and encoded
(ResNet [15]) to obtain the final compression representation.

Contrastive learning strategy. As described above, by utilizing
the wavelet-based encoder, we encode the query, positive and neg-
ative patches into compression representations, respectively. Then
the representations are further fed into the multi-layer percep-
tron (MLP) to obtain 𝑥 , 𝑥+ and 𝑥− for loss calculation, as shown
in Figure 2. Note that 𝑥 and 𝑥+ have the same JPEG compression
quality factor, while 𝑥 and 𝑥− have different QFs. Therefore, 𝑥 is
encouraged to be similar to 𝑥+ and dissimilar to 𝑥−. Inspired by the
methods [3, 33, 42], the compression representation learning (CRL)
loss function is expressed as:

𝐿𝐶𝑅𝐿 = − log
exp(𝑥 · 𝑥+/𝜏)∑𝑁

𝑛=1 exp(𝑥 · 𝑥−𝑛 /𝜏)
, (1)

where𝑁 represents the number of negative patches and 𝜏 is a hyper-
parameter. Obviously, CRL loss encourages the extracted features
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with the same QF to be similar, while the extracted features with
different QFs to be away from each other. The well-trained CRL-Net
can encode JPEG compressed forged images into distinguishable
compression representations, which can be used for JPEG-resistant
IFL network as described below.

3.3 JPEG Compression-Aware Image Forgery
Localization Network (CA-IFL)

Based on the learned compression representations, we train the
CA-IFL network to obtain accurate forgery localization for JPEG
compressed images, as shown in Figure 3. The specific network
architecture and training loss function are described below.

Network architecture. The architecture of the CA-IFL is shown
in Figure 3. It takes JPEG compressed forged images 𝑦 as input and
aims to predict the corresponding forged region masks �̂� as accu-
rately as possible. We take ResBlocks [15] as backbone to extract
basic features 𝑓1, 𝑓2, 𝑓3, 𝑓4 from 𝑦. Furthermore, we introduce two
important branches to enhance localization accuracy against JPEG
compression. The first one is the compression-aware branch, which
consists of the well-trained wavelet-based compression represen-
tation encoder (shown in the orange box) and fusion TransBlock
(shown in the dark blue box). The second one is the boundary cor-
rection branch (shown as tandem gray blocks: EB and CEBs), which
aims to alleviate the edge artifacts caused by JPEG compression.

Specifically, for the first branch, 𝑦 is encoded into compression
representation 𝑟 . Then 𝑟 together with the basic feature 𝑓4 are sent
into a fusion TransBlock for forged region localization, denoted as

�̂� = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (T (𝑧)) , (2)

where 𝑧 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑟, 𝑓4) and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) is activation. 𝑇 (·) repre-
sents fusion TransBlock. To reduces the computational cost, we
don’t use global self-attention like the vanilla Transformer but
perform aWindow-based Multi-head Self-Attention [35] within non-
overlapping local windows, abbreviated as 𝑇 (·) in Eq. 2. For the
second branch, the boundary correction branch consists of edge
block (EB) and combined edge blocks (CEB) [4]. It takes basic fea-
tures 𝑓1, 𝑓2, 𝑓3, 𝑓4 as input and gradually extracts edge information,
so that the network can make refined boundary constraints. The
structure of EB is at the bottom left in Figure 3. It take basic feature
𝑓1 as input, denoted as:

𝑐1 = 𝑠1 = 𝐸𝐵(𝑓1), (3)

where 𝑐1 together with basic feature 𝑓2 are the input of CEB, whose
structure is at the bottom right in Figure 3, denoted as:

𝑐𝑖+1 = 𝐶𝐸𝐵(𝑓𝑖+1, 𝑐𝑖 ), (4)

where 𝑖 = 1, 2, 3. The final edge-related feature 𝑐4 is utilized to pre-
dict boundary of forged area for precise constraints. The predicted
egde 𝑒 can be denoted as:

𝑒 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑐4), (5)

Loss Functions. As mentioned above, we obtain the predicted
tampered region mask �̂� and tampered region boundary 𝑒 . Then
we apply pixel-level constraints on �̂� and 𝑒 . Specifically, to obtain
accurate localization, we conduct two loss functions, i.e., mask loss
𝐿𝑚𝑎𝑠𝑘 and edge loss 𝐿𝑒𝑑𝑔𝑒 . Inspired by the method [4], to learn

Table 1: The datasets involved in our experiments. The cor-
responding numbers of these datasets are presented below
(C-M: Copy-Move; Sp: Splicing; Re: Removal). We also anno-
tate whether the post-processing (P-P) is applied.

Type Dataset Total C-M | Sp | Re P-P

Training CASIAv2 [7] 5063 3235 | 1828 | 0 ✓

Testing

COVER [36] 100 100 | 0 | 0 ✓
Columbia [16] 180 0 | 180 | 0 -
NIST16 [13] 564 68 | 288 | 208 ✓
CASIAv1 [7] 920 459 | 461 | 0 ✓

from extremely imbalanced data, we adopt Dice loss to build 𝐿𝑚𝑎𝑠𝑘

and 𝐿𝑒𝑑𝑔𝑒 loss function, denoted as

𝐿𝑚𝑎𝑠𝑘 = 1 −
2 ·∑𝑊

𝑖=1
∑𝐻

𝑗=1 �̂�𝑖 𝑗 ·𝑚𝑖 𝑗∑𝑊
𝑖=1

∑𝐻
𝑗=1 �̂�

2
𝑖 𝑗
+∑𝑊

𝑖=1
∑𝐻

𝑗=1𝑚
2
𝑖 𝑗

, (6)

𝐿𝑒𝑑𝑔𝑒 = 1 −
2 ·∑𝑊

𝑖=1
∑𝐻

𝑗=1 𝑒𝑖 𝑗 · 𝑒𝑖 𝑗∑𝑊
𝑖=1

∑𝐻
𝑗=1 𝑒

2
𝑖 𝑗
+∑𝑊

𝑖=1
∑𝐻

𝑗=1 𝑒
2
𝑖 𝑗

, (7)

where 𝑊 and 𝐻 are the spatial resolution of the forged image.
𝑚𝑖 𝑗 ∈ {0, 1} is a binary label indicating whether the (𝑖, 𝑗 ) pixel is
manipulated, while �̂�𝑖 𝑗 is the pixel value in the predicted mask �̂�.
𝑒𝑖 𝑗 and 𝑒𝑖 𝑗 indicate similar meanings as𝑚𝑖 𝑗 and �̂�𝑖 𝑗 . Note that 𝑒
presents the ground truth edge obtained from𝑚. The above loss
functions constitute the overall loss to train the CA-IFL network:

𝐿 = 𝐿𝑚𝑎𝑠𝑘 + 𝜆𝐿𝑒𝑑𝑔𝑒 , (8)

where 𝜆 is used to balance loss functions.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of the proposed JPEG compression-aware image forgery
localization model based on the novel compression representations
learning scheme. First, we introduce the training/testing datasets
and experimental details. Then we investigate the effectiveness of
each component involved in the proposed model. In subsection
4.3, we compare our method with the state-of-the-art methods on
standard datasets. Last but not least, we evaluate the robustness of
our our method to JPEG compression with multiple compression
quality factors, as shown in subsection 4.4.

4.1 Experimental Setup
Datasets. The datasets involved in our experiments are sum-

marized in Table 1. For fair comparison with the state-of-the art
methods, we adopt five public datasets: CASIAv2 [7], COVER [36],
Columbia [16], NIST16 [13] and CASIAv1 [7]. The CASIAv2 dataset
is used for training, while the other four datasets are used for testing.
Some datasets apply post processing like filtering and blurring to
hide traces of tampering. Specifically, in CASIAv1 and CASIAv2, the
tampered regions are carefully selected, which have various objects.
Different from the other three datasets, CASIAv1 and CASIAv2 do
not contain the ground truth masks. We threshold the difference be-
tween forged images and authentic images to obtain corresponding
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Table 2: Ablation study on 𝐹1 score. Our proposed framework contains CRL-Net and CA-IFL. Specifically, CRL-Net can be
wavelet-based or spatial-based. CRL-Net can use contrastive learning strategy or directly regress the quality factor. While
the CA-IFL contains two important components: the compression fusion block (transformer-based vs. CNN-based) and the
boundary correction branch. We evaluate the effectiveness of these settings on COVER dataset. The best results are boldfaced.

Setting Compression Representation Learning Network Fusion Block Boundary
𝐹1Number Wavelet-based Spatial-based Contrastive-learning Regression Transformer-based CNN-based Correction

1 - - - - - - ✓ 0.441
2 - ✓ ✓ - ✓ - ✓ 0.457
3 ✓ - - ✓ ✓ - ✓ 0.459
4 ✓ - ✓ - - ✓ ✓ 0.463
5 ✓ - ✓ - ✓ - - 0.460

6 (Ours) ✓ - ✓ - ✓ - ✓ 0.469

GT masks. The COVER dataset covers similar objects as the pasted
regions to conceal the tampering artifacts. The Columbia dataset
is relatively small, which focuses on splicing manipulation. The
NIST16 dataset is a challenging dataset, which contains all three
tampering techniques (copy-move, splicing and removal).

Evaluation metrics. For quantitative assessment, we use pixel
level 𝐹1 as evaluation metric, which is more suitable for the image
forgery localization (IFL) task. In specific, based on a threshold, the
output mask �̂� can be converted to a binary mask �̂�𝑏 . Compared
with the GT mask, we can compute pixel-level precision and recall.
Their harmonic mean is pixel level 𝐹1. Following [4], for compar-
ison with the state-of-the-art methods on standard datasets, we
adopt fixed threshold (0.5) and the optimal threshold to obtain 𝐹1,
respectively. Compared with the fixed threshold F1, the optimal
threshold F1 sets different thresholds respectively. Corresponding
to each threshold, we calculates the binary mask and the F1. Then
we takes the maximum F1 value as optimal threshold F1, which
is computationally expensive. As for the ablation study and the
comparison on JPEG compressed forged images with multiple QFs,
we only utilize 𝐹1 with fixed threshold (0.5), which is more practical.
In specific, the 𝐹1 metric is defined as:

𝐹1 (�̂�𝑏 ,𝑚) = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

, (9)

Where �̂�𝑏 represents the binary system output mask.𝑚 represents
the ground truthmask.𝑇𝑃 represents the number of pixels classified
as true positive. As similar definition, 𝐹𝑁 and 𝐹𝑃 represent false-
negative numbers and false-positive numbers, respectively.

Implementation details. The proposed JPEG compression-aware
image forgery localization model (CA-IFL) based on the novel
compression representations learning (CRL-Net) scheme is im-
plemented in PyTorch. The CRL-Net and CA-IFL are trained on
CASIAv2 dataset. For model input, we obtain the JPEG compressed
forged images 𝐼𝑐 by compressing the forged images 𝐼 with different
JPEG quality factors (𝑄𝐹 = 50, 60, 70, 80, 90, 100) through 𝑀𝑎𝑡𝑙𝑎𝑏

API function. We choose the range of 𝑄𝐹 = 50 ∼ 100 because im-
ages from real social media are generally within this range and this
setting is used by other comparison methods. Then, 𝐼𝑐 is utilized
to construct query, positive and negative patches to train CRL-Net.
Based on the well-trained CRL encoder, 𝐼 and 𝐼𝑐 are used for CA-IFL
training. The ResBlocks involved in our model are initialized with

QF=90 QF=50Original QF=70

Figure 4: Visualization of the feature maps output by CRL-
Net. As can be seen, CRL-Net has a low response to the clean
image and high responses to JPEG compressed images, espe-
cially in the area where artifacts are serious.

ImageNet-pretrained counterparts. For optimization, we use Adam
optimizer [20] to train our model with a learning rate periodically
decays from 10−4 to 10−7. Following [4], We apply regular data
augmentation for training, including flipping, blurring, etc.

4.2 Ablation Study
Our proposed network contains compression representation learn-
ing network (CRL-Net) and JPEG compression-aware image forgery
localization network (CA-IFL). Specifically, CRL-Net can be divided
into wavelet-based net and spatial-based net. Besides CRL-Net can
use contrastive learning strategy or directly regress the quality
factor. While the CA-IFL contains two important components: the
compression fusion block, which can be be transformer-based or
CNN-based [10], and the boundary correction branch. We con-
duct ablation experiments on the above settings to investigate the
effectiveness, which are shown in the Table 2.

Effect of CRL-Net. Obviously, when removing the CRL-Net, com-
pression fusion block no longer exists. As shown in the Table 2,
comparing the performance of setting-1 and setting-6, 𝐹1 score
drops from 0.469 to 0.441, which indicates that, by introducing
JPEG compression representation, CRL encoder can guide the CA-
IFL network to effectively locate the tampered region. To prove
that our CRL-Net is able to predict compression-related representa-
tions, we visualize the learned feature maps in Figure 4. Obviously,
CRL-Net has a low response to the clean image and high responses
to JPEG compressed images, especially in the area where artifacts
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Table 3: 𝐹1 score with fixed|optimal threshold on four standard datasets. We conduct on four public datasets without additional
compression operation. Note that 𝐹1 score with fixed threshold (0.5) is more practical. The best results are in bold.

Dataset MFCN [31] RGB-N [47] HP-FCN [21] ManTra-Net [38] CR-CNN [1] GSR-Net [46] MVSS-Net [4] Ours

COVER n.a.|n.a. n.a.|0.379 0.003|0.199 0.286|0.772 0.291|0.470 0.285|0.489 0.453|0.824 0.469|0.826
Columbia n.a.|0.612 n.a.|n.a. 0.067|0.471 0.364|0.709 0.436|0.704 0.613|0.622 0.638|0.703 0.657|0.690
NIST16 n.a.|0.422 n.a.|n.a. 0.121|0.360 0.000|0.455 0.238|0.428 0.283|0.456 0.292|0.737 0.298|0.721
CASIAv1 n.a.|0.541 n.a.|0.408 0.154|0.214 0.155|0.692 0.405|0.662 0.387|0.574 0.452|0.753 0.471|0.767

Forged Image Ground Truth Mantra-Net [38] HP-FCN [21] MVSS-Net [4] Ours

Figure 5: Hard cases. From top to bottom, these forged images have light/shadow effects, complex tampered boundaries or
textures. The forged regions blend in with the surrounding scene and are indistinguishable even by human eyes.

are serious. Therefore, the learned representations, which is high
related to JPEG compression artifacts, can be utilized to guide the
subsequent CA-IFL network.

Effect of CRL-Net: wavelet-based vs. spatial-based. As shown in
setting-2 and setting-6, when we replace wavelet-based net with
spatial-based net [33], 𝐹1 score drops from 0.469 to 0.457. This
demonstrates the advantages of wavelet-based net on JPEG images
which are highly correlated with frequency.

Effect of CRL-Net: contrastive learning vs. regression. To train
the CRL-Net, we utilize the contrastive learning strategy instead of
directly regressing the real QF values. To compare the two strategies,
we train a QF-regression network with MSE loss. As setting-3 and
setting-6 shown in Table 2, the 𝐹1 score decreases from 0.469 to
0.459. It indicates that, the JPEG representation encoder training
based on contrastive learning strategy is more suitable for IFL task.
Because our goal is to learning a "good" compression representation
rather than explicitly estimating the QF.

Effect of fusion block: transformer-based vs. CNN-based. The fu-
sion block is utilized to introduce the learned representation into
CA-IFL network. As shown in setting-4 and setting-6, the transformer-
based block has a 0.003 performance improvement over the tradi-
tional CNN-based block.

Effect of boundary correction branch. As shown in Table 2, the
𝐹1 metric of setting-5 is 0.009 lower than that of setting-6. In Fig-
ure 1, intuitively, as the compression quality factor decreases, the
boundaries of the forged regions become unclear. Therefore, the
refinement correction of the boundary is necessary.

4.3 Comparison with the State-of-the-Art
Methods

Following the method [4], for a fair comparison, we compare our
method with state-of-the-art methods: MFCN [31], RGB-N [47], HP-
FCN [21], ManTra-Net [38], CR-CNN [1], GSR-Net [46] and MVSS-
Net [4]. Note that all the models are trained on CASIAv2, expect for
ManTra-Net [38] and HP-FCN [21], which are trained on private
set. They are tested on four standard datasets (shown in Table 1)
without additional compression operations. To comprehensively
evaluate the superiority of our method, we evaluate 𝐹1 scores with
fixed and optimal thresholds (shown in Table 3) and show some
forgery localization results on hard cases (depicted in Figure 5).

As shown in Table 3, we evaluate 𝐹1 scores with "fixed|optimal"
threshold, respectively. The description of the metric is described
in subsection 4.1. As we can see, compared with other methods, our
method achieves comparable or even better performance on the
four standard datasets. Especially, our method reaches the best over-
all performance in 𝐹1 score with the fixed threshold (0.5), which
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Figure 6: Robustness evaluation against JPEG compression in terms of 𝐹1 score.We compare ourmethod with the state-of-the-art
approaches on three datasets. The JPEG compression quality factor ranges from 100 to 50.

is more commonly used in practice. In addition, we show some
hard cases results in Figure 5. These forged images have complex
tampered boundaries, textures, light and shadow effects, etc. The
forged regions blend in with the surrounding scene and are indis-
tinguishable even by the human eyes. As we can see, most methods
fail, our method can still locate the correct regions.

Note that although our problem setting is for JPEG compressed
forged images, our model also obtains superior performance on the
standard datasets. This is because that JPEG compression can be
regarded as a strong interference, which brings blocking artifacts,
ringing effects, blurring and color distortion, etc. These complex
compression artifacts overlap with the image tampering traces.
While our specially designed CA-IFL network is trained to extract
more intrinsic and essential features, which are highly correlated
with tampering traces, so as to eliminate the effects of complex
artifacts. Therefore, the forgery localization performance can be
greatly improved even on hard samples that are indistinguishable.
Our model can be extended to enhance forgery localization by
introducing other reasonable perturbations.

4.4 Robustness on JPEG Compression Scenarios
In this section, we focus on evaluating the robustness performance
of our method against JPEG compression with multiple quality
factors. As shown in Figure 6, we compare our method with state-
of-the-art approaches ManTra-Net [38], CR-CNN [1], GSR-Net
[46] and MVSS-Net [4] on three datasetes: CASIAv1, COVER and
Columbia. We show the performance (𝐹1 score with fixed threshold
0.5) under different compression quality factors: 100, 90, 80, 70, 60,
50. Note that ManTra-Net and MVSS-Net adopted a wide range
of data augmentations including compression, while CR-CNN and
GSR-Net did’t use such data augmentation, which is unfair. So we
mainly focus on the comparison with ManTra-Net and MVSS-Net.

Comparing Figure 6 with Table 3, it can be seen that the JPEG
compression operation leads to performance drop in terms of 𝐹1
score on every method, and as QF decreases, the performance is

getting worse. While our method achieves comparable or better
performance at all quality factors. Taking the CASIAv1 dataset as
an example, as QF decreases from 100 to 50, the 𝐹1 performance
of CR-CNN drops from 0.405 to 0.085, ManTra-Net drops from
0.155 to 0.066, GSR-Net drops from 0.375 to 0.272 and MVSS-Net
drops from 0.451 to 0.390. while our model performance drops
from 0.471 to 0.417. Especially at 𝑄𝐹 = 50, our performance is
generally much higher than other methods. Note that images are
usually compressed with 𝑄𝐹 ≈ 70 in most real social networks
[27], e.g., Facebook (𝑄𝐹 = 71) and Wechat (𝑄𝐹 = 70). Our model
can handle this situation very well. Besides, the Figure 1 at the
beginning intuitively shows the impact of JPEG compression on
forgery localization task. Our method can obtain more accurate
localization results.

5 CONCLUSION AND DISCUSSION
In this paper, we propose a JPEG compression-aware image forgery
localization network (CA-IFL) with the guidance of a wavelet-based
compression representation learning network (CRL-Net). Specifi-
cally, CRL-Net utilizes contrastive learning strategy to obtain com-
pression representations, which are highly related with JPEG com-
pression. Based on the learned representations, we introduce the
CA-IFL to flexibly handle forged images compressed with various
JPEG quality factors. Additionally, a boundary correction branch is
designed to alleviate the edge artifacts caused by JPEG compression.
Extensive experimental results have demonstrated the superiority
of the proposed method not only on standard datasets, but also on
the JPEG forged images with multiple compression quality factors.

Further, other than compression, there are still some real-social-
media conditions that have not been considered, such as noise,
down-sampling and so on. They will bring more complex artifacts,
and the tampered traces will be almost completely concealed. This
will bring greater challenges to the image forgery localization task.
It is harder but has practical application values. These extensions
are considered as our future work.
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