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Figure 1: Visualization of learned feature maps in our Cross-Scale Similarity Attention Blocks (CSSABs). (a) (b) (c) (d) are
the visualization of each group in the spatial CSSAB. {LL, HL, LH, HH} denote four wavelet bands and focus on different
characteristics. LL and HL focus on the smoothed background and high-frequency rain streaks, respectively. HL and LH
pay attention to horizontal and vertical characteristics, respectively. (e) (f) (g) (h) are extracted from the channel CSSAB. We
incorporate the multi-head mechanism in the channel CSSAB to extract multifocal representations, e.g., bear’s body, water and
ice fields.

ABSTRACT
Albeit existing deep learning-based image de-raining methods have
achieved promising results, most of them only extract single scale
features, and neglect the fact that similar rain streaks appear repeat-
edly across different scales. Therefore, this paper aims to explore
the cross-scale cues in a multi-scale fashion. Specifically, we first in-
troduce an adaptive-kernel pyramid to provide effective multi-scale
information. Then, we design two cross-scale similarity attention
blocks (CSSABs) to search spatial and channel relationships be-
tween two scales, respectively. The spatial CSSAB explores the spa-
tial similarity between pixels of cross-scale features, while the chan-
nel CSSAB emphasizes the interdependencies among cross-scale
features. To further improve the diversity of features, we adopt the
wavelet transformation and multi-head mechanism in CSSABs to
generate multifocal features which focus on different areas. Finally,
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based on our CSSABs, we construct an effectivemultifocal attention-
based cross-scale network, which exhaustively utilizes the cross-
scale correlations of both rain streaks and background, to achieve
image de-raining. Experiments show the superiority of our net-
work over state-of-the-art image de-raining approaches both quali-
tatively and quantitatively. The source code and pre-trained models
are available at https://github.com/zhangzheyu0/Multifocal_derain.
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1 INTRODUCTION
Rainy days are common weather conditions in daily life. Due to the
influence of rain streaks, shooting in rainy weather will cause the
image to be blocked and blurred. Removing rain not only improves
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visual quality, but also benefits downstream computer vision ap-
plications, such as autonomous driving and outdoor surveillance
systems.

To mitigate the effect of rain, amounts of image de-raining meth-
ods have been proposed. These methods can be roughly divided into
two categories: model-based and data-driven approaches. Model-
based methods require prior knowledge to constrain the solution
space, such as the sparsity and directions of rain streaks [37], and im-
age patches-based similarity prior [11]. However, since these priors
are manually designed, they are relatively simple and may not work
under complicated rainy conditions. In recent years, data-driven
deep learning (DL) methods have dominated the field of low-level
vision tasks [4, 7, 16, 24, 25, 30, 32–35]. Thanks to the enormous
data sets, DL methods can easily learn the rich features from the
data. For the image de-raining task, most DL-based methods fo-
cus on designing elegant network architectures [27, 31]. Although
these methods have achieved promising performances, there are
three non-trivial factors for rain removal task which are neglected.
The first factor is the global spatial information mined in the rainy
images. Since rainy images usually contain long rain streaks [8],
many methods expect to solve this problem by stacked convolution
layers or dilated convolution. While their receptive fields are still
limited and cannot deal with extreme rainy conditions. NLEDN
[8] adopts the non-local module [23] to explore the global spatial
information to mitigate the effect at the cost of computing bur-
den [38]. The second factor is the cross-scale similarities between
two-scale images [6, 14, 19, 20]. For the same image at two differ-
ent scales, the structures of rain streaks and background object
can be geometrically similar. MSPFN [6] explores the similarities
through vanilla convolutions in a multi-scale fashion. Nevertheless,
MSPFN can only explore cross-scale similarities in limited local
areas, and cannot take global information into account. Last but not
least, the global similarity for cross-scale features along the channel
dimension has not been fully exploited and utilized. Therefore, it
is necessary to explore the cross-scale channel correlation from a
global perspective.

In this paper, we take the mentioned factors into account and de-
sign two cross-scale similarity attention blocks (CSSABs) to explore
and exploit the cross-scale correlation along the spatial and channel
dimensions. The spatial CSSAB searches spatial similarities from
two-scale features regardless of distance. To alleviate the compu-
tation burden, we utilize the spatial pyramid pooling (SPP) [5, 38]
to construct this block. The channel CSSAB absorbs multi-scale
features and generates enhanced features that aggregate the cross-
scale information along the channel dimension. To further improve
the diversity of feature representations, we design two multifocal
strategies for the spatial and channel CSSABs, respectively. For the
spatial CSSAB, we design a Feature Re-Calibrated Block (FRCB)
by utilizing wavelet transformation to generate multi-frequency
components which can be seemed as focusing on multiple regions
of interests. For the channel CSSAB, we utilize the multi-head
mechanism to split features into multiple groups and process each
group individually. This implicitly pushes each group to focus on
content-related information. Finally, based on our proposed CSS-
ABs, we construct a multifocal attention-based cross-scale network
to achieve image de-raining. Compared with the existing DL-based

techniques, our network is capable of utilizing more suitable com-
plementary cues from different scales, and consistently performs
well across various rainy images. Our work has the following main
contributions.

• We propose a multifocal attention-based cross-scale network
to explore and aggregate cross-scale correlations for the
specific image de-raining task.

• We propose a spatial cross-scale similarity attention block to
explore the spatial interdependencies. To improve the repre-
sentation of features, based on the wavelet transformation,
we design a feature re-calibrated block to generate multifocal
spatial representations.

• We propose a channel cross-scale similarity attention block
to model the global correlation along the channel dimension.
The multi-head mechanism is utilized to generate multifocal
channel representations.

• Experiments show that our proposed network not only achieves
better performance than state-of-the-art methods both on
conventional measurements, but also benefits the down-
stream person detection task.

2 RELATEDWORK
2.1 Single Image De-raining
Traditional methods explore hand-crafted priors to constrain the ill-
posed de-raining problem. For instance, Li et.al. [11] use Gaussian
mixture models to accommodate multiple orientations and scales
of rain streaks. Zhu et.al. [37] first estimate rain-dominated patches
through rain streaks directions, and then design three image pri-
ors based on these patches. However, when the rainy image does
not meet the prior assumptions, the de-rained image will be over-
smoothed.

Instead, DL-basedmethods can extract rich features throughmas-
sive data and thus achieve better de-raining performance [9, 28]. Fu
et al. [2] adopt a residual learning network to learn rain residue in
high frequency image layers. PReNet [15] shows the effectiveness
of progressive recurrent network by repeating ConvLSTM layer
and ResNet blocks. Li et al. [9] adopt a cycle mechanism and utilize
a decomposition network to split the rainy image into background
layer and clean layer. Then, an extra composition network maps
the previous two layers back to the rainy image, which can boost
the de-raining quality. NLEDN [8] utilizes non-local attention [23]
and dense connection to remove long-range rain streaks. The au-
thors of SPANet [22] propose a spatial attentive module to capture
rain streaks directions for guiding the subsequent de-raining pro-
cess. In DRDNet [1], the authors design two sub-nets in parallel
to remove rain and recover details. In RCDNet [21], the authors
integrate dictionary learning into a deep network and remove rain
with optimization algorithms. Other methods estimate the clean
background with extra supervised information, such as rain mask
and rain density map in [27], and the rain density in [31].

2.2 Multi- and cross-scale Learning
Intuitively, rain streaks have cross-scale similarities between var-
ious scales, while only a few methods take this correlation into
account. Yang et al. [29] embed cross-scale self-supervision in frac-
tal band learning network to regularize the output, which ensures
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Figure 2: The overall architecture of our proposed network, which removes rain streaks in a coarse-to-fine fashion. The entrance
module generates coarse features with the adaptive-kernel pyramid and the spatial CSSAB, while the attention-based basic
module takes advantages of cross-scale information in both spatial and channel dimensions. The fusion module aggregates
features from each scale and estimates the de-rained image. The red and dashed arrows denote cross-scale interaction and long
skip connection, respectively.

features of rain streaks in different scale are equivalent. The self-
supervision improves generalization for real-world data. In [6],
authors first discover the similarity hidden in the multi-scale rain
patterns, and absorb the cross-scale information by the concatena-
tion of multi-scale features and convolution. This strategy is also
adopted in [14, 19]. DCSFN [20] fuses the output of multi-scale sub-
net via gate recurrent unit. Among the mentioned approaches, the
fusion strategy of two scales is not proper due to the drawback of
the simple convolutional operations, which leads to limited aggre-
gation fields. In contrast, we explicitly aggregate global cross-scale
information contained in rain streaks and background. Below we
detail our proposed network.

3 METHODOLOGY
In general, the observed rainy image O can be decomposed into the
clean background layer B and the residue layer R:

O = B + R. (1)

As shown in Figure 2, our network directly predicts R instead of B.
The reason is that the residual layer R is sparser than B, which is
easier for network convergence.

3.1 Adaptive-kernel Pyramid
To obtain multi-scale information, we first design an adaptive-
kernel pyramid as the basic components of our network architecture.
The process of pyramid generation is:

I𝑠 = K ∗ I𝑠−1, (2)

where I𝑠 is the smaller-scale image, I𝑠−1 is the larger-scale image,
and K denotes image filter. Different from existing methods that
use fixed-kernel, e.g., Gaussian kernel in Gaussian image pyramid,
to construct the image pyramid, we allow K to be learnable to
improve the network flexibility. Since our kernels adaptively learn
the weights from specific training data, they perform better than
the fixed-kernel whose parameter is manually designed.

3.2 Spatial Cross-Scale Similarity Attention
Block (Spatial CSSAB)

Attention mechanism maps a query with each key and responds
to a weighted sum of corresponding values. The mapping function
can be seen as a similarity search function, which is widely used
in high-level vision tasks. However, existing methods based on
similarity mechanism only design attention block in a single scale
for image de-raining, which neglect the cross-scale correlations. To
mitigate this problem, we introduce two types of CSSABs to explore
correlation along the spatial and channel dimensions, respectively.

The spatial CSSAB is designed to model the spatial global cor-
relation in cross-scale interaction. When given the features from
the two scales, the keys and values are obtained from the small-
scale features, and the queries are obtained from the large-scale
features. An intuitive way for aggregating global cross-scale in-
formation is to apply the non-local block with the three inputs.
Concretely, the keys and values are K, V ∈ R𝐻2𝑊2×𝐶 and queries
are Q ∈ R𝐻1𝑊1×𝐶 , where 𝐻1 ×𝑊1 ×𝐶 is the size of large-scale fea-
ture maps and 𝐻2 ×𝑊2 ×𝐶 is the small-scales. Then the attention
output can be obtained from:

F𝑜𝑢𝑡 = F𝑖𝑛 + softmax
(
Q ⊗ K𝑇

)
⊗ V, (3)

where F𝑖𝑛 and F𝑜𝑢𝑡 are the large-scale feature maps, ⊗ denotes
matrix multiplication.

Since features from all channels are transformed in the same
fashion, they may focus on one specific signal band [12]. Therefore,
we introduce a new Feature Re-Calibrated Block (FRCB) (Figure 3)
to generate multifocal features from different signal bands. Specif-
ically, we first utilize the wavelet transformation as guidance to
re-calibrate the features and push them to focus on different signal
bands in different channels. For simplicity, we only take the queries
Q ∈ R𝐻1×𝑊1×𝐶 for illustration. We adopt the simple and fast Haar
wavelet [13, 26] to decompose the features into four-frequency
bands {Q𝐿𝐿,Q𝐿𝐻 ,Q𝐻𝐿,Q𝐻𝐻 } ∈ R𝐻1/2×𝑊1/2×𝐶 . Then, we utilize
the pixel-shuffle operation [17] to rearrange features R𝐻1/2×𝑊1/2×𝐶
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to R𝐻1×𝑊1×𝐶/4. Finally, we concatenate the features of four groups
to get the re-calibrated features. After queries, keys and values
are re-calibrated, we search similarities across scales in these four-
frequency groups, individually. As shown in Figure 1, the learned
features are multifocal, e.g., horizontal or vertical characteristics,
and smoothed or high-frequency characteristics.

H×W×C

WT

PS : Pixel-Shuffle

HH HL LH LL

PS

4×H×W×C/4

4×H/2×W /2×C

WT : Wavelet Transform

Figure 3: Feature Re-Calibrated Block (FRCB). The FRCB
adopts wavelet transformation and pixel-shuffle to generate
multifocal features.

To further strengthen the practicality of our spatial CSSAB, we
decrease the computational complexity in matrix multiplication
𝑂 (𝐻1𝑊1𝐻2𝑊2𝐶) with the spatial pyramid pooling (SPP). In SPP,
the feature maps are sent to 4 different adaptive average pooling
layers and transformed into 4 feature maps with sizes of 1× 1, 3× 3,
6 × 6 and 8 × 8. Then the four maps are reshaped and concatenated
into a fixed-length anchor with a fixed length of 𝑆 , 𝑆 = 1 × 1 + 3 ×
3 + 6 × 6 + 8 × 8 = 110. Therefore, the SPP not only decreases the
computational complexity to 𝑂 (𝐻1𝑊1𝑆𝐶) (where 𝑆 ≪ 𝐻2𝑊2), but
also provides a sparse multi-scale representation which is proved
useful in many computer vision tasks. With SPP, the similarity
attention map M ∈ R4×𝐻1𝑊1×𝑆 is calculated as:

M = softmax
[
Q𝐿𝐿K

𝑇
𝐿𝐿,Q𝐿𝐻K𝑇

𝐿𝐻 ,Q𝐻𝐿K
𝑇
𝐻𝐿,Q𝐻𝐻K𝑇

𝐻𝐻

]
, (4)

where K ∈ R𝑆×𝐶 are different-frequency components in keys pro-
cessed by SPP, [·] denotes concatenation. At last, an enhanced
spatial feature F𝑜𝑢𝑡 is:

F𝑜𝑢𝑡 = F𝑖𝑛 + [M𝐿𝐿V𝐿𝐿,M𝐿𝐻V𝐿𝐻 ,M𝐻𝐿V𝐻𝐿,M𝐻𝐻V𝐻𝐻 , ] , (5)

whereM ∈ R𝐻1𝑊1×𝐶 are different-frequency components in simi-
larity attention map, and V ∈ R𝑆×𝐶 are different-frequency compo-
nents in values processed by SPP.

3.3 Channel Cross-Scale Similarity Attention
Block (Channel CSSAB)

To complement the spatial CSSAB, we further design the chan-
nel attention to emphasize the global content-related information.
Different from existing methods that perform channel attention
in a single scale, our channel CSSAB can provide channel inter-
action across two adjacent scales. Since wavelet transform and
pixel-shuffle will change the inherent appearance and order of
channels, we discard FRCB in our channel CSSAB. SPP is retained
which extracts hierarchical global information in each channel

making similarity search more accurate. After processed by SPP,
queries from large-scale features are expressed as Q ∈ R𝑆×𝐶 . Keys
from small-scale features are expressed as K ∈ R𝑆×𝐶 . Values from
large-scale remain unchanged V ∈ R𝐻1𝑊1×𝐶 . The final output from
the channel CSSAB is expressed:

F𝑜𝑢𝑡 = F𝑖𝑛 + V ⊗
(
softmax

(
K𝑇 ⊗ Q

))
, (6)

Similar to the spatial CSSAB, the features in the channel CSSAB
can also focus on different areas. Inspired by the transformer [18]
in nature language processing, we adopt the multi-head mechanism
to generate multifocal features implicitly compared with explicit
guidance in the spatial CSSAB.We choose four heads as our baseline,
and as shown in Figure 1, our channel CSSAB can highlight different
focal areas, such as the bear’s body, ice fields and water.
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Figure 4: Architectures of CSSABs. (a) is the spatial CSSAB
and (b) is the channel CSSAB. We omit the convolution and
reshape functions for visualization.

3.4 De-raining Network
As shown in Figure 2, our network consists of entrance module,
attention-based basic module and fusion module. In the entrance
module, we first apply adaptive-kernel pyramid to generate multi-
scale images. Three parallel convolutions are applied to extract
shallow features from the image pyramid. Then, we utilize spatial
CSSAB for enhancing coarse features. With the spatial CSSAB, the
coarse features contain cross-scale and long-distance information
which is better for subsequent processing. Specifically, we inject
two adjacent scale features into our spatial CSSAB, and enhance
large-scale features from small-scale features. Notable, our CSSAB
at the bottom of the pyramid only absorbs single-scale features.

In the attention-based basic module, we embed both the spatial
and channel CSSAB in each scale. To alleviate the computation
burden, we down-sample the spatial dimension of features in each
scale before sending them into the channel CSSAB. After fusing
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Table 1: Ablation study on the effect of the components in proposed network on Rain200H [27].

Models
Pyramid Cross-scale interaction (CSI)

PSNR↑ SSIM↑Fixed Adaptive w/o CSI w/ CSI
Gaussian Downsampling Adaptive w/o CSI Conv Spatial-CSSAB Channel-CSSAB

Model-1 ! ! ! 29.32 0.893
Model-2 ! ! ! 28.73 0.874
Ours ! ! ! 30.17 0.906

Model-3 ! ! 29.12 0.884
Model-4 ! ! 29.21 0.890
Model-5 ! ! 30.01 0.900
Model-6 ! ! 29.97 0.900

the channel information of different scales, we use pixel-shuffle to
up-sample the spatial dimension. Long skip connections are also
adopted to propagate the gradient. Then the pyramidal features are
fed into spatial CSSAB to aggregate the global spatial information
between two adjacent scales. We deploy 8 basic modules to explore
cross-scale features in a coarse-to-fine fashion. In the fusionmodule,
we up-sample small-scale features and concatenate themwith large-
scale features. In this way, different-scale features are fully applied
to estimate a rain residual layer.

3.5 Loss Function
We train our network using the mean absolute error (MAE), which
can preserve edges and details compared with mean square error
(MSE) [36]. The MAE loss is:

L =


B̂ − B




1 , (7)

where B̂ andB are the estimated de-rained image and corresponding
ground-truth background image, respectively.

4 EXPERIMENTS
We compare our network with several SOTA methods on three data
sets, i.e., Rain200H [27], Rain200L [27] and DID [31]. Rain200H and
Rain200L both have 1,800 paired training images and 200 paired
testing images. We also perform ablation study on Rain200H to
validate the effectiveness of our network. DID is synthesized with
three rain-density levels and each level has 4,000 paired images.
The testing data set contains 1,200 paired images with three levels
mixed.

We select one real-world data set with ground truth, i.e., SPAdata
[22], for evaluating the generalization of our network. This testing
data set consists of 1,000 pairs captured from real rain videos. The
ground-truth images are generated with temporal priors and human
supervision. We also conduct experiments on several Internet data.

4.1 Training Details
Our network is implemented on PyTorch and trained on an Nvidia
1080Ti GPU for 700 epochs. We adopt Adam optimizer with a mini-
batch size of 4. We input 128 × 128 image pairs without any data
augmentation. The initial learning rate is 2 × 10−4, and divided by
2 every 100 epochs.

Table 2: Ablation study on the effect of the head number on
Rain200H [27].

head number 1 2 4 8 16

PSNR↑ 29.50 29.77 30.17 29.46 29.64
SSIM↑ 0.895 0.899 0.906 0.894 0.896

Table 3: Ablation study on the effect of the module number
on Rain200H [27].

Module number 6 7 8 9 10

PSNR↑ 29.34 29.70 30.17 29.84 29.87
SSIM↑ 0.893 0.897 0.906 0.901 0.900

4.2 Ablation Study
4.2.1 Ablation Study on Different Components. We design seven
models to test the effect of each component on the Rain200H data
set in Table 1. We separate the experiments into two categories, i.e.
Pyramid and Cross-Scale Interaction (CSI). The pyramid consists
of fixed-kernel pyramid and adaptive-kernel pyramid. In the exper-
iments, we set Gaussian kernel and downsampling kernel as our
fixed-kernel. For the experiments of CSI, we first design a model
without CSI, i.e., a model with three single-scale sub-nets, which
deal with each scale image individually. Meanwhile, we compare
different ways of CSI within three sub-classes, i.e., convolution
(Conv), spatial CSSAB and channel CSSAB.

As shown in Table 1, adaptive-kernel pyramid (Ours) achieves
about an improvement of 1.0dB on average PSNR compared with
fixed-kernel pyramid (Model-1 and Model-2). CSI can also benefit
the rain removal especially with our CSSABs. Compared with the
simplest CSI (Model-4), both the spatial CSSAB and channel CSSAB
lead to better results. The visual performance is provided in Figure
6.

4.2.2 Ablation Study on hyper parameters. In the channel CSSAB,
we introduce the multi-head mechanism to improve the diversity
of the generated features. Is the performance better with more
head? So in Table 2, we test the influence of head number. The
performance is improved as the head number increases but begins
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(a) Rainy Image (b) JORDER: 35.21/0.9824 (c) MSPFN: 34.22/0.9782 (d) Ours: 37.28/0.9874 (e) GT: Inf/1.0000

(f) Rainy Image (g) PReNet: 29.55/0.8222 (h) DCSFN: 31.45/0.8618 (i) Ours: 32.41/0.8859 (j) GT: Inf/1.0000

Figure 5: Comparison results on Rain200L [27] and DID [31]. PSNR/SSIM on the luminance (Y) channel for reference.

Input  14.48/0.3635 Model-1  30.42/0.8943 Model-2  30.19/0.8898

Model-3  29.15/0.8736 Model-4  29.46/0.8808 Model-5  30.95/0.9046

Model-6  30.84/0.9036 Ours  31.34/0.9092 Ground Truth  

Figure 6: Results on the effect of each component.

to decay when the head number exceeds 4. For example, when
ℎ𝑒𝑎𝑑 = 16, the PSNR decreases 0.53dB compared with ℎ𝑒𝑎𝑑 = 4.

Table 4: Ablation study on the effect of the kernel number
on Rain200H [27].

Kernel numbers 32 64 96

PSNR↑ 28.82 30.17 29.01
SSIM↑ 0.882 0.906 0.884

Table 5: Comparison results on SPAdata [22]. The compared
models are trained on Rain200H [27] and tested on SPAdata
for validating generalization on real rainy condition.

MSPFN DRDNet DCSFN RainRemoval Ours

PSNR↑ 31.01 33.56 34.53 34.45 35.25
SSIM↑ 0.936 0.948 0.952 0.953 0.955

It is that each group only has four feature maps since the total
number of feature maps is 64. The enhanced feature in each group
is generated on the weighted average of the four features. If one of
them is inaccurate, the result is easily affected. While it is difficult
to be affected in a group with more features. Therefore, we use 4
heads as the default setting.

We also test the impact of attention-based basic module number.
From Table 3, we can observe that the results almost increase with
more modules. However, when the training data is not enough, it is
harder to converge to a better result with redundant modules. Con-
sequently, we set 8 attention-based basic modules in our network.
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(a) Rainy Image (b) GMM: 12.39/0.3967 (c) DDN: 23.44/0.8191 (d) DID-MDN: 23.44/0.8687 (e) RESCAN: 24.24/0.8575

(f) NLEDN: 26.71/0.9304 (g) JORDER: 26.07/0.918 (h) PReNet: 25.90/0.9248 (i) SPANet: 22.84/0.8904 (j) DCSFN: 26.73/0.9190

(k) MSPFN: 26.14/0.9196 (l) DRDNet: 27.05/0.9193 (m) RainRemoval: 26.67/0.9377 (n) Ours: 28.84/0.9430 (o) GT: Inf/1.0000

Figure 7: Comparison results on Rain200H [27]. PSNR/SSIM on the luminance (Y) channel for reference.

Table 6: Average PSNR and SSIM results on three benchmark
data sets. Boldfaced and underlined indicate top 1𝑠𝑡 and 2𝑛𝑑
rank, respectively.

Data sets Rain200H Rain200L DID
PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑

GMM [11] (CVPR’16) 14.50/0.418 28.56/0.870 25.81/0.796
JCAS [3] (ICCV’17) 14.69/0.502 29.79/0.898 25.16/0.822
DDN [2] (CVPR’17) 26.05/0.805 34.68/0.967 30.97/0.885
DID-MDN [31] (CVPR’18) 25.02/0.842 35.40/0.962 29.66/0.901
RESCAN [10] (ECCV’18) 26.75/0.835 36.09/0.970 33.38/0.918
NLEDN [8] (MM’18) 29.85/0.899 39.83/0.984 34.68/0.936
JORDER [27] (TPAMI’19) 29.35/0.890 39.12/0.984 34.06/0.931
PReNet [15] (CVPR’19) 29.04/0.899 37.25/0.979 33.17/0.928
SPANet [22] (CVPR’19) 26.27/0.866 35.79/0.965 33.04/0.928
MSPFN [6] (CVPR’20 28.99/0.888 39.03/0.982 34.51/0.935
DRDNet [1] (CVPR’20) 29.03/0.885 38.84/0.982 33.73/0.923
DCSFN [20] (MM’20) 29.46/0.893 38.86/0.983 34.77/0.938
RainRemoval [14] (MM’20) 29.32/0.900 39.78/0.985 33.48/0.921
Ours 30.17/0.906 40.38/0.987 35.00/0.940

In Table 4, we test the impact of kernel number. The increasing ker-
nel number cannot always improve the performance of de-raining,
since the gradient is more difficult to propagate with redundant
parameters caused by the increasing kernel number.

4.3 Comparison with SOTA methods
We compare with 2 model-based methods, i.e., GMM [11], and
JCAS [3], and 11 DL-based methods, i.e., DDN [2], DID-MDN [31],
RESCAN [10], NLEDN [8], JORDER [27], PreNet [15], SPANet [22],
MSPFN [6], DRDNet [1], DCSFN [20] and RainRemoval [14]. All
the compared methods are tested on the same platform for a fair
comparison. The PSNR and SSIM are calculated on the luminance
(Y) channel, and the results are shown in Table 6. It is clear that our
network achieves the best overall performance. In synthetic data
set, we present visual results in Figure 5 and Figure 7. All compared
DL-based methods can remove obvious rain streaks, but tend to
over-smooth the details of background or introduce artifacts. We
validate the generalization on SPAdata and the Internet data. Table
5 shows that our method can also work well in real rainy condition.
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MSPFN
32.46/0.9791

DRDNet
38.34/0.9903

DCSFN
43.94/0.9902

RainRemoval
35.60/0.9832

Ours
46.56/0.9943

GT
Inf/1.0000Rainy Image

MSPFN
26.81/0.8871

DRDNet
28.60/0.9376

DCSFN
29.73/0.9523

RainRemoval
32.88/0.9765

Ours
34.13/0.9778

GT
Inf/1.0000Rainy Image

Figure 8: Generalization results on the SPAdata [22]. The
weights of models are trained on Rain200H [27].

PReNet

Rainy Image DCSFN

JORDER DRDNet

RainRemoval Ours

Figure 9: Generalization results on the Internet data. The
weights of models are trained on Rain200H [27].

In Figure 8 and Figure 9, our method removes rain streaks without
losing texture of background.

4.4 Application for High-level Tasks
Rain removal task usually plays a pre-processing role for high-level
vision tasks. In our experiments, we evaluate our model in person
detection which is reported on a commercial detection system 1. In
Figure 10, eight persons are detected compared with five persons
in the rainy image. Compared with other rain removal methods,
our method can detect more persons with higher probability scores
on the likelihood.

5 CONCLUSION
We introduce a multifocal attention-based cross-scale network to
explore the cross-scale correlations of rain streaks and background,
which is critical for the image de-raining. Our network is con-
structed based on the adaptive-kernel pyramid and two cross-scale
similarity attention blocks. The adaptive-kernel pyramid generates
more appropriate hierarchical features for post-processing. The
spatial CSSAB explores global cross-scale information along the

1Clarifai: https://www.clarifai.com/

MSPFN DRDNet DCSFN Ours

PERSON 0.86 0.86 0.88 0.89

PERSON 0.85 0.81 0.80 0.79

PERSON 0.74 0.77 0.75 0.77

PERSON 0.78 0.79 0.76 0.75

PERSON 0.64 0.64 0.67 0.68

PERSON 0.53 - 0.63 0.61

PERSON - - - 0.54

PERSON - - 0.52 0.52

MSPFN DRDNet DCSFN Ours

PERSON 0.91 0.91 0.91 0.91

PERSON 0.69 0.68 0.69 0.74

PERSON 0.62 0.62 0.62 0.65

PERSON 0.62 0.58 0.62 0.62

PERSON 0.55 0.54 0.55 0.57

PERSON 0.52 0.52 0.52 0.53

(a) Rainy Image 

(c) Ours 

(b) Rainy Image 

(d) Ours 

(e) Probability Score (f) Probability Score  

Figure 10: Pre-processing for person detection.’-’ indicates
that the method cannot detect this person.

spatial dimension while the channel CSSAB explores the cross-scale
correlation in channel-wise. The feature re-calibrated block and the
multi-head mechanism in CSSABs push the enhanced features to
be multifocal. With the effective components, our network achieves
promising de-raining results on several benchmarks.
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