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Abstract
Deep convolutional neural networks (CNNs) have shown their advantages in the single image de-raining task. However, most
existing CNNs-basedmethods utilize only local spatial information without considering long-range contextual information. In
this paper, we propose a graph convolutional networks (GCNs)-basedmodel to solve the above problem.We specifically design
two graphs to extract representations from new dimensions. The first graph models the global spatial relationship between
pixels in the feature, while the second graph models the interrelationship across the channels. By integrating conventional
CNNs and our GCNs into a single framework, the proposed method is able to explore comprehensive feature representations
from three aspects, i.e., local spatial patterns, global spatial coherence and channel correlation. To better exploit the explored
rich feature representations, we further introduce a simple yet effective recurrent operations to perform the de-raining process
in a successivemanner. Benefiting from the rich information exploration and exploitation, ourmethod achieves state-of-the-art
results on both synthetic and real-world data sets.

Keywords Image de-raining · Graph convolutional networks · Deep learning · Image processing

1 Introduction

Images captured on rainy days are often contaminated by rain
streaks, which can blur and block background objects. This
phenomenon significantly degrades the visual quality and
negatively affects outdoor vision systems, such as detection
(Mordan et al. 2019; Liu et al. 2019), recognition (Zhang
and Patel 2016), tracking (Zhang et al. 2013), segmentation
(Wojna et al. 2019), scene understanding (Sakaridis et al.
2018; Chen et al. 2017) and person re-identification (Wang
et al. 2018; Li et al. 2018). Since single image de-raining can
potentially improve both subjective perception quality and
objective vision system performance, it has been attracted
more and more attention in the computer vision community
(Narasimhan and Nayar 2002; Li et al. 2019c; Wang et al.
2020; Li et al. 2019b; Yang et al. 2020).
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In the past several years, various approaches have been
introduced to remove rain streaks form both videos and
single images. For both issues, existing methods either man-
ually design algorithms to solve it in a model-driven fashion,
or automatically learn de-raining functions based on the
data-driven deep learning methodology. Since there is no
temporal information for rain streaks detection, single image
de-raining is obviously more challenging than video. More-
over, the success in single image de-raining can be directly
extended to video. Therefore, in this paper, we focus on
removing rain streaks from single images.

Due to the powerful nonlinear modeling capacity, deep
learning-based methods have recently dominated the field
of single image de-raining. Current state-of-the-art methods
are all adopting convolutional neural networks (CNNs) as
backbones. However, conventional CNNs only capture local
spatial information and thus ignore long-range relationships
between imagepixels. Since rain streaks andobject structures
are long in space and similar in geometry, several methods
(Li et al. 2018b; Yang et al. 2019) adopt the dilated convo-
lution (Yu and Koltun 2016) to obtain larger receptive fields
without increasing parameter burdens. However, since the
convolution operation is essentially a process of weighted
summation,whatwe get fromdilated convolution is still local
spatial information, i.e., obtaining one pixel value from one

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01428-6&domain=pdf
http://orcid.org/0000-0001-8036-4071


1692 International Journal of Computer Vision (2021) 129:1691–1711

finite spatial image area. Recently, a method based on a self-
attention mechanism (Li et al. 2018) is proposed to extract
spatial neighbor information for single image de-raining.
However, this method requires a large amount of memory
consumptions due to the non-local operation (Wang et al.
2018), which limits its practical values. Another direction is
to combine CNNs and recurrent neural networks (RNNs) (Li
et al. 2018b; Ren et al. 2019). Due to the repeated features
utilization, the de-raining performance can be boosted. How-
ever, these methods focus on propagating spatial information
without considering the correlation between channels. There-
fore, for the specific image de-raining task, the aspect of fully
exploring global spatial coherence and channel correlation
has not been noticed.

To address the above limitations, this paper utilizes graph
convolutional networks (GCNs) (Kipf and Welling 2017) to
extract and complement new contextual information for the
single image de-raining. Specifically, we first design a dilated
convolution fusion block to extract multi-scale local spatial
patterns. Then, we propose two lightweight graph convo-
lutional networks to explore global spatial coherence and
channel correlation of features from the dilated block. The
dilated block and graph convolutional networks comprise the
basic unit of our network, which is able to extract both local
spatial and long-range contextual information. To fully uti-
lize extracted features, we perform the de-raining process in
a successive manner by introducing simple recurrent oper-
ations. Therefore, our model is able to explore and exploit
multi-dimension features representations for the tough single
image de-raining problem.

In summary, our contributions are fourfold:

– We propose a unified deep model based on graph convo-
lution networks for single image de-raining. Our model
integrates the advantages of CNNs, GCNs and RNNs and
applies them to this specific task.

– We design two lightweight graph convolutional networks
to model global spatial coherence and channel correla-
tion. By combining dilated CNNs and proposed GCNs,
our model is able to explore rich representations of both
local spatial patterns and global contextual information.

– We further introduce a simple yet effective recurrent oper-
ations to perform the de-raining in a successive manner.
The extracted rich representations in current stages can
be well exploited to help subsequent stages for boosting
de-raining performance.

– Our network has the advantages of easy implementation
and efficient calculation. Experiments demonstrate that
our model favorably performs against the state-of-the-art
methods on both synthetic and real-world datasets.

2 RelatedWork

2.1 Video-BasedMethods

We first briefly review the rain removal from video frames,
in which both spatial and temporal information can be uti-
lized. The first study on video de-raining is proposed byGarg
and Nayar (2004), in which rain streaks are removed from a
static background using average intensities from the neigh-
boring frames. The authors (Garg and Nayar 2005, 2007)
then reduce rain effect by increasing the exposure time or
reducing the depth of camera field. Santhaseelan and Asari
(2015) minimize registration error between frames and use
phase congruency to detect and remove the rain streaks.Other
methods focus on de-raining in the Fourier domain (Barnum
et al. 2010), using Gaussianmixture models (GMMs) (Bossu
et al. 2011), low-rank approximations (Chen et al. 2013), and
via matrix completions (Kim et al. 2015). Ren et al. (2017)
divide rain streaks into sparse ones and dense ones, then a
matrix decomposition based algorithm is proposed for de-
raining. Based on motion segmentation of dynamic scene,
(Chen and Chau 2013) use photometric and chromatic con-
straints for rain detection and removal. Kim et al. (2015)
adopt support vector machine to decompose rain streaks and
outliers, and use low rank matrix completion to achieve rain
removal. By exploring the intrinsic characteristics of clean
frames and rain streaks, (Jiang et al. 2017, 2018) introduce a
novel tensor-based method for video rain removal. An alter-
nation direction method of multipliers is adopted to solve
the objective function. Recently, a novel patch-based mix-
ture of Gaussians (Wei et al. 2017) is firstly proposed for
video de-raining removal. The authors proposed a concise
P-MoG model by integrating the spatio-temporal smooth-
ness of moving objects and low rank background structures.
Li et al. (2018a) propose a multi-scale convolutional sparse
coding model (Zhang and Patel 2017) to model the charac-
teristics of video rain streaks. Similar to Wei et al. (2017),
both �1 and TV regularization are utilized to solve the model.

Very recently, deep convolutional neural networks have
also been explored for the video de-raining. To deal with
highly dynamic scenes, (Chen et al. 2018) utilize deep CNNs
and super-pixel for content alignment and rain removal. Liu
et al. (2018) design a hybrid rain model and utilize recurrent
neural networks to explore temporal redundant information.
This method is able to achieve rain degradation classifica-
tion, rain steaks removal and object details reconstruction.
Later, the authors further propose a dynamic routing recur-
rent network (Liu et al. 2018) with residue learning for video
de-raining.
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2.2 Single-ImageMethods

Different with the video de-raining that can utilize tempo-
ral information, single image de-raining is more ill-posed
and challenging. Therefore, the research on single image de-
raining has drawnmore andmore attention. In general, single
image de-raining methods can be categorized into model-
driven and data-driven methods.

Model-driven methods are manually designed by utiliz-
ing physical characteristics of rain streaks, or exploring prior
knowledge to constrain the ill-posed problem. For example,
(Kim et al. 2013), apply a nonlocal mean smoothing fil-
ter on the rainy image to achieve image de-raining. Zhang
et al. (2013) modify the guided filtering (He et al. 2013)
to obtain the de-rained result in an iterative manner. Sev-
eral model-driven methods adopt various priors to separate
rain streaks and content form rainy images. Kang et al.
(2012) adopt morphological component analysis and utilize
histogram of oriented gradients features to cluster learned
dictionary, and then remove rain streaks in high frequency
regions. To recognize rain streaks, (Huang et al. 2014) pro-
pose a self-learning based image decomposition method. By
coding over a learned dictionary with mutual exclusivity,
(Luo et al. 2015) propose a discriminative sparse coding to
distinguish rain streaks from non-rain content. Chang et al.
(2017) employ the low-rank assumptions to model and sepa-
rate rain streaks. Li et al. (2016) exploits a GMMbased patch
prior to isolate rain streaks and preserve background details.
Wang et al. (2017) introduce a hierarchical scheme combined
with guided filtering and dictionary learning to progressively
remove rain and snow. To efficiently separate background
and rain streaks, (Zhang and Patel 2017) proposed a method
to learn generic sparsity-based and low-rank representation-
based convolutional filters. Then, an optimization problem
is introduced to obtain de-rained results by using the learned
filters. Gu et al. (2017) utilize analysis sparse representa-
tion and synthesis sparse representation to model large-scale
structures andfine-scale textures, respectively.A joint convo-
lutional analysis and synthesis sparse representation model
is proposed to extract and remove rain streaks. Zhu et al.
(2017) explore three priors, i.e., local and nonlocal sparsity,
gradients derivation and visual similarity, for separating rain
streaks from background. The authors then integrate these
priors into a joint bi-layer optimization process for image
rain removal.

In recent years, deep learning has achieved significant
success in several image processing tasks, such as image
de-noising (Zhang et al. 2017), super-resolution (Dong et al.
2016; Tai et al. 2017), de-blurring (Li et al. 2019), de-hazing
(Ren et al. 2019; Zhang and Patel 2018a), image generation
(Zhang et al. 2019), raindrop removal (Eigen et al. 2013;Qian
et al. 2018), etc.With the powerful nonlinearmodeling capac-
ity, deep learning is also utilized to solve the tough image

de-raining problem. For example, (Fu et al. 2017) addition-
ally utilize domain knowledge and train a 3-layer CNNs on
high frequency parts to simplify the learning processing. This
method is improved in Fu et al. (2017) by combining ResNet
(He et al. 2016) to reduce the mapping range for easing the
learning process. Other deep CNNs-based methods focus on
designing advanced network structure to improve de-raining
performance. Based on the generative adversarial networks
(GANs) (Goodfellow et al. 2014; Zhang et al. 2019) integrate
quantitative, visual, and discriminative performance into loss
function for image de-raining. To adaptively utilize the rain-
density information, the authors (Zhang and Patel 2018b)
further presented a multi-stream dense network to perform a
density-aware image de-raining process. Yang et al. (2017)
combine a RNN and dilated convolutions (Yu and Koltun
2016) to build a multi-task network structure, which is able
to learn rain streaks appearance, rain streaks location and
de-rained image. Later, a detail preserving process (Yang
et al. 2019) is added into the above model for a better de-
raining performance. To mitigate the problem of large rain
streaks and rain streak accumulation, the wavelet transform
is embedded into a recurrent learning framework (Yang et al.
2019) to exploit hierarchical features for challenging heavy
rainy scenes. Li et al. (2018b) also utilize recurrent neural
networks and combine it with squeeze-and-excitation (SE)
blocks (He et al. 2018) for rain removal. The SE block
is designed to automatically assign weights to various rain
streak layers. To capture abstract features for accurate rain
streaks estimation, (Li et al. 2018) proposed a non-locally
enhanced encoder-decoder network based on the non-local
neural networks (Wang et al. 2018). Fu et al. (2019) adopt
the classical image pyramid decomposition to handle the
image de-raining in a divide-and-conquer manner. To han-
dle heavy rainy images with hazy effect, the authors of Li
et al. (2019a) design a deep network based on the physical
model and insert auxiliary losses to train it. Similar with (Li
et al. 2019a), the authors of Hu et al. (2019) formulate the
rain imaging process based on scene depth, and then intro-
duce a depth-guided attention mechanism to remove heavy
rain streaks. To take the location information of rain drops
into consideration, uncertainty guided multi-scale residual
learning network is proposed in Yasarla and Patel (2019,
2020) to learn the rain content at different scales. By repeat-
edly unfolding a shallow ResNet, (Ren et al. 2019) propose
a simple yet effective de-raining network with progressive
recurrent operations. To handle the problem of lacking real-
world training pairs, (Wang et al. 2019) semi-automatically
built a large-scale real-world data set that covers various natu-
ral rain scenes. The authors further propose a spatial attentive
network to remove rain streaks in a local-to-global fashion.
To make the trained network better generalize to real-world
scenarios, (Wei et al. 2019) introduce semi-supervised learn-
ing paradigm for unseen rain types. The authors adoptResNet
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as the supervised part, and feed real-world rainy images for
unsupervised regularization with Gaussian Mixture Model.
In this semi-supervised manner, the method alleviates the
issues of generalization ability and over-fitting. Wang et al.
(2019) propose an entangled representation learning formu-
lation to solve this intrinsic de-raining problem. Recently,
to effectively aggregate the contextual information, (Wang
et al. 2020) design a novel context-aware feature extraction
module. A new reverse parametric rectified linear unit is fur-
ther proposed to improve the representation capacities. This
method shows promising results on both de-raining and de-
hazing tasks. Based on the pyramid architecture, (Jiang et al.
2020) introduce a novel multi-scale progressive fusion net-
work to explore the multi-scale representations to modeling
rain streaks. To fully integrate conventional model-driven
optimization methods and data-driven deep learning tech-
nology, (Wang et al. 2020) propose a novel interpretable
network architecture for image de-raining. The proximal gra-
dient descent technique is utilized to design the network.

2.3 Graph Convolutional Networks

Recent deep learning-based image de-raining methods are
all designed based on convolutional neural networks. The
limited receptive fields of CNNs prevent them from taking
all the contextual image information into account. Although
the dilated convolution (Yu and Koltun 2016) are utilized
to increase the receptive field, it still capture a limited local
spatial information.

On the other hand, graph convolutional neural networks
(Kipf and Welling 2017) are proposed to effectively model
long-range contextual information. GCNs have been used
for various high-level vision tasks (Qi et al. 2017; John-

son et al. 2018; Li et al. 2018c), and for image and video,
the most widely used form of GCNs is non-local networks
(Wang et al. 2018). For example, for object detection and
video understanding, non-local operations learn an adjacency
matrix to character the spatial coherence between all pixels in
the image. Recently, the non-local operator has been applied
to single image de-raining (Li et al. 2018). However, this
method directly utilizes the original non-local operation and
thus have a huge memory cost. In addition, there are still few
methods to explore the potential value of GCNs for the image
de-raining.

Different from existing CNNs-based methods, we specif-
ically design two GCNs to model the global contextual
information of input features. One GCN is used to explore
global spatial coherence and the other one aims to mea-
sure channel correlation. Compared with the method (Li
et al. 2018), our well designed GCNs can calculate more
efficiently andgenerate features from thenewchannel dimen-
sion. The obtained two context-aware features contain rich
global information and provide more comprehensive repre-
sentations for the specific single image de-raining task.

3 Methodology

In Fig. 1, we present our proposed model for single-image
de-raining. To summarize at a high level, our networkmainly
contains ten basic units and each is comprised by one dilated
convolution block and two graph convolution blocks. The
direct network output is the residual map, which is a common
technique used in existing deep learning-based methods (Li
et al. 2018b; Yang et al. 2019) to ease learning. Thewhole de-
raining process is performed in a successive manner to fully

Fig. 1 The framework of the proposed successive graph convolutional
network for single image de-raining. Our network contains two standard
convolutional layers, ten basic units and one ConvLSTM layer. Each

basic unit consists of one dilated block, one spatial GCN block and one
channel GCN block. t indicates the current stage
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Fig. 2 The structure of our dilated block. Fin is the input features and
DF indicates the dilation factor. The generated multi-scale features are
concatenated to produce the output features F̂D

exploit the extracted rich features. Below, we describe the
network design, loss function, and implementation details of
our method.

3.1 Network Architecture

Our network architecture mainly contains three components:
one feature extraction layer, ten basic units and one recon-
struction layer. The feature extraction layer is designed to
extract basic features from the rainy input. The operation of
this layer is defined as

F = σ(W ∗ X + b), (1)

whereX is the input,F is the featuremap, ∗ indicates the con-
volutional operation, W and b are the kernel and bias, σ(·)
is the non-linear activation. The basic unit, which is the core
of our model, aims to explore both local and global informa-
tion. This unit will be detailed at the following section. The
reconstruction layer is used to generate the de-rained image
Y by

Y = X + R = X + f (X), (2)

where R is the residual generated by the network f (·).

3.2 Basic Unit

We design one dilated convolution block and two graph con-
volution blocks to form the basic unit. The former block aims
to capture local spatial patterns while the later blocks focus
on modeling global contextual information. In this way, our
model is able to explore effective information from multiple
dimensions to serve the de-raining process.

3.2.1 Dilated Convolution Block

Since rain streaks and object structures are spatially long, we
therefore use dilated convolutions (Yu and Koltun 2016) to
capture multi-scale spatial patterns. Dilated convolutions is
able to increase the contextual area while preserving resolu-
tion and reducing parameters burden. The features obtained

by dilated convolutions are defined as

FDF = WDF ∗ Fin + b, (3)

where DF is the dilation factor, Fin is the input feature, FDF

is the output feature of convolution with DF .
To obtain multi-scale spatial information, we further pro-

pose a parallel fusion strategy as shown in Fig. 2. Specifically,
we design two convolutional paths in each dilated block. The
upper path consists of two normal convolutional layers to
capture small-scale spatial patterns, while the lower one con-
tains two dilated convolutional layers for large-scale spatial
information. The output of this block is generated by fusing
the four features with a 1×1 convolutional operation. In this
way, the fused features F̂D contains information of different
receptive fields, i.e., 3 × 3, 5 × 5, 7 × 7 and 13 × 13. This
enables the dilated convolution block to effectively extract
multi-scale local spatial representations.

3.2.2 Graph Convolution Blocks

Although the dilated convolution is utilized to obtain a large
receptive field, the information contained in generated fea-
tures is still from a local spatial region. Different with CNNs,
the graph convolution allows long-range information inter-
action. For images, a typical form of graph convolution is
the non-local operation (Wang et al. 2018), which is able to
measure the similarity between one pixel and all pixels in the
image. Let a feature map be F ∈ R

HW×N , where N is the
number of channel, H and W are the height and width of F,
respectively. The graph convolution is defined as Kipf and
Welling (2017)

F̂ = AFW, (4)

whereA is the adjacency matrix andW is the weight matrix.
For the specific image de-raining task, we propose two graph
convolution blocks to learn representations of global spatial
coherence and channel correlation, respectively.

Spatial graph convolution block. We first build a fully-
connected graph to model the global spatial coherence. In
our spatial graph convolution network, the nodes of the graph
are pixels and the adjacency matrix measures the similar-
ity between these pixels. Similar with the non-local network
Wang et al. (2018), we use three 1 × 1 convolution layers,
θ(·), ν(·) and ξ(·), on the input feature to reduce channels
and aggregate spatial information. As shown in Fig. 3, the
new feature is defined by

F̂S = ASFSWS

= θ(F̂D)ν(F̂D)�ξ(F̂D)WS, (5)
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Fig. 3 The structure of our spatial GCN block. The sizes of both input
and output feature maps are H × W × N and

⊗
denotes matrix mul-

tiplication

where F̂D is output of the dilated block, � is the transpose
operation. θ(·)ν(·)� is performed by matrix multiplication
and canbe seen as the adjacencymatrixAS .Note that the term
(θ(·)ν(·)�)ξ(·) can be re-ordered to θ(·)(ν(·)�ξ(·)) accord-
ing to the associative rule (Chen et al. 2018). Compared with
the original non-local network (Wang et al. 2018; Li et al.
2018) which calculates a large adjacency matrix with size of
(HW )2, using the re-ordering can significantly reduce com-
putation complexity.Wealso introduce the softmaxoperation
to avoid numerical instabilities. Theweighting process ofWS

is performed by using one 1×1 convolution layer onASFS to
perform a hidden-to-output operation. By deploying the pro-
posed spatial GCN into the basic unit, our model is allowed
to produce coherent predictions that consider all pixels of the
input feature.

Channel graph convolution block. In addition to explor-
ing global spatial coherence, we also design a channel graph
convolution block to take the channel correlation into consid-
eration. This channel GCN aims to model interdependencies
along the channel dimensions of the input features.

First, to aggregate information from different channels,
we adopt two 1 × 1 convolutions κ(·) and ζ(·) on the input

feature F̂D , where κ(F̂D) ∈ R
HW× N

3 and ζ(F̂D) ∈ R
HW× N

2 .
Then a new featureFC that represents the channel correlation
is given by

FC = κ(F̂D)�ζ(F̂D). (6)

Here, the size of this new feature FC is N
3 × N

2 , that is, it
contains N

2 nodes, and the dimension of each node is N
3 .

For this channel GCN, we construct a fully-connected graph

with the adjacency matrix AC ∈ R
N
3 × N

3 and the weights

WC ∈ R
N
2 × N

2 on the new feature FC to describe the channel
correlation. As shown in Fig. 4, our channel graph convolu-
tion is defined by

F̂C = φ(FC + ACFCWC )

= φ(FC + AC (κ(F̂D)�ζ(F̂D))WC ), (7)

where the adjacencymatrixAC and theweightWC are imple-
mented by the 1D convolution (Chen et al. 2019) and learned

Fig. 4 The structure of our channel GCN block. The green box is the
2D convolution using a kernel with size of 1 × 1. The blue box is the
1D convolution and

⊕
denotes element-wise addition

from training data. We add FC for better gradient back pro-
rogation during training. Since the size of generated graph
is N

3 × N
2 , we design a operation to perform the hidden-to-

output operation. Specifically, we first multiply κ(F̂D) by the
generated graph and then utilize one convolutional layer φ(·)
to increase the number of channel to N . In this way, the size
of F̂C is HW × N , so that it can participate in subsequent
operations. By deploying the proposed channel GCN into
the basic unit, our model is allowed to capture correlations
between channels of the input feature.

Finally, by taking the generated features of all blocks into
consideration, the output feature of our basic network unit is
defined by

F̂unit = σ(Fin + F̂D + F̂S + F̂C ). (8)

The refined feature thus contains rich representations from
multiple dimensions.

It is worth noting that our proposed unit is similar to the
inception block (Szegedy et al. 2015, 2016, 2017). Both our
unit and the inception block are constructed in the fashion
of network in network (Lin et al. 2014). This makes our
unit the same as the inception block and can be used as
the basic component of deep networks. However, our pro-
posed unit has several advantages in dealing with image
de-raining. First, the inception block utilizes parallel filters
with different kernel sizes to extract multi-scale representa-
tions. Our dilated block has the same goal, but it can get a
larger receptive field. Although the depth of the inception
block (Szegedy et al. 2015) and our dilated block are both
2, the largest receptive field of the former and the latter in a
single block is 5 and 13, respectively. Second, the inception
block only focuses on exploring multi-scale features of local
spatial regions.While our proposed twoGCNblocks are able
to explore global information from the spatial and channel
dimensions. Third, since the inception block is designed for
high-level vision tasks, pooling operations are incorporated
into the block to obtain abstract features. While we remove
all pooling operations to reduce the loss of detailed informa-
tion. Therefore, compared to the inception block, the above
mentioned advantages can effectively improve the network
representation capability and make it more suitable for the
image de-raining task.
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3.2.3 Successive Image De-raining

To fully exploit the extracted multi-dimension information,
we take the basic network structure one step further and pre-
form the de-raining process in a successive manner. First, we
incorporate a recurrent layer to propagate fused rich features
to facilitate de-raining. We choose the convolutional long
short-term memory (ConvLSTM) (Xingjian et al. 2015) as
our recurrent layer due to its empirical superiority.

At stage t , the concatenation of the current feature Ft and
previous state ht−1 is sent into ConvLSTM. It includes an
input gate it , a forget gate ft , an output gate ot and a cell state
ct . The current operations are expressed as

Ft = concat(Ft ,ht−1),

it = sigmoid(Wi F ∗ Ft + Wis ∗ ht−1 + bi ),

ft = sigmoid(W f F ∗ Ft + W f s ∗ ht−1 + b f ),

ot = sigmoid(WoF ∗ Ft + Wos ∗ ht−1 + bo),

gt = tanh(WgF ∗ Ft + Wgs ∗ ht−1 + bg),

ct = ft � ct−1 + it � gt ,

ht = ot � tanh(ct ), (9)

where � is element-wise product, concat(, ) is the concate-
nation. sigmod(·) and tanh(·) are sigmoid function and
hyperbolic tangent function, respectively. To alleviate the
memory burden, we only deploy this layer on the output
feature of the last unit.

Inspiredby theStrengthen-Operate-Subtract (SOS)method
(Romano and Elad 2015; Chen et al. 2019), which aims to
improve the image de-noising performance of the boosting
framework, we further concatenate the previous de-rained
result and the rainy image as the input of the current stage. In
each stage of the original SOS algorithm, the input of the de-
noising operator f (·) is the strengthened image X +Yt . To
obtain faithful de-noised results, the output of f (·) subtracts
Yt and the calculation at stage t is defined by

Yt = f (X + Yt−1) − Yt−1. (10)

Since Yt is a de-noised version, according to the Cauchy-
Schwarz inequality, we have SN R(X + Yt−1) > SN R(X)

(Romano and Elad 2015), where SN R denotes signal-to-
noise ratio (SNR). This SOS operation makes the de-noising
process more effectively due to the improved SNR. There-
fore, we utilize both the previous de-rained result and the
rainy image to strengthen the signal. We remove the subtrac-
tion in Eq. (10) and use concatenation to let the network
automatically learn its parameters to predict the residual
image. At stage t , Eq. (2) can be formulated as

Yt = X + R = X + f (concat(X,Yt−1)), (11)

whereR denotes the residual generated by our network (oper-
ator) f (·), andYT is the final de-rained result at the last stage
T . Compared to using only the rainy input or only the pre-
vious de-rained result (Li et al. 2018b), adding both of them
providesmore useful information to help boost the de-raining
performance.

3.2.4 Loss Function

The most widely used loss function for training a network is
mean squared error (MSE). However,MSE usually generates
over-smoothed results because of its �2 penalty. To address
this drawback, we adopt the SSIM (Ren et al. 2019) as our
loss function to balance rain removal and detail preservation

L = 1

M

M∑

i=1

1 − SSI M(YT
i ,Ygt,i ), (12)

where M is the number of training data andYgt is the ground
truth.

3.2.5 Training Details

Weset the kernel size of the dilated convolution block as 3×3.
The number of feature maps is 18 for all convolutions and the
non-linear activation σ(·) is ReLU (Krizhevsky et al. 2012).
The dilated factors are set 1 and 3 within each dilated block.
We found 10 basic units are enough to generate good results.
We use TensorFlow (Abadi et al. 2016) and Adam (Kingma
and Ba 2014) with amini-batch size of 8 to train our network.
We initialize the learning rate to 0.001, divide it by 10 at 30
and 70 epoch, and terminate training after 100 epoch. We
randomly select 100 × 100 patch pairs from training image
data sets as inputs. All experiments are performed on a server
with Intel Core i7-8700K CPU and NVIDIA GTX 1080Ti
GPU.

4 Experiments

We quantitatively evaluate our model on both and real-
world synthetic data sets. We compare our method with one
model-based deraining method: Joint Convolutional Analy-
sis and Synthesis (JCAS) (Gu et al. 2017), and seven recent
deep learning-based methods: Deep Detail Networks (DDN)
(Fu et al. 2017), Density-aware Image De-raining (DID)
(Zhang and Patel 2018b), REcurrent Squeeze-and-excitation
Context Aggregation Net (RESCAN) (Li et al. 2018b),
JOint Rain DEtection and Removal with detail Enhancement
(JORDER-E) (Yang et al. 2019), Semi-supervised Image
Rain Removal (SIRR) (Wei et al. 2019), Progressive Recur-
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rentNetwork(PReNet) (Ren et al. 2019) andSPatialAttentive
Network (SPANet) (Wang et al. 2019).

4.1 Synthetic Data

Weuse five public synthetic data sets provided by themethod
(Li et al. 2016), JORDER-E (Yang et al. 2019), DDN (Fu
et al. 2017) and DID (Zhang and Patel 2018b). These five
data sets were generated using different synthetic strategies.
The method (Li et al. 2016) contains 12 testing light rainy
images, which generated by using Matlab and the additive
composite model expressed as:

Y = X + R. (13)

The JORDER-E dataset contains two subsets, each with 200
testing images, which have light rain streaks and challenging
heavy rain streaks, respectively. This dataset is synthesized
by using Matlab and the rain accumulation model:

Y=α

(

X +
L∑

l=1

Rl

)

+ (1 − α)A, (14)

where l denotes the rain streak layer and L is the total number
of rain streak layers.A is the global atmospheric light, and α

is the atmospheric transmission. The rest two datasets con-
tain 1400 and 1200 testing images, respectively. The authors
adopt Photoshop,1 in which the process of rainy image gen-
eration is based on the screen blending model:

Y = X + R − XR. (15)

Although these rainy imaging models are heuristic, the syn-
thetic datasets are at least somewhat helpful in removing
rain streaks, as reported in the literature (Yang et al. 2020).
For these five synthetic datasets, we call them, ‘Rain12’,
‘Rain200L’, ‘Rain200H’, ‘DDN-Data’ and ‘DID-Data’. The
models trained on JORDER-E light rainy dataset are used to
test ‘Rain12’.

We show four representative visual results with different
rain orientations and magnitudes from Figs. 5, 6, 7, 8, 9,
and their corresponding references are shown in Fig. 10. For
the light rainy images from Rain200L data set, except for
JORDER-E, PreNet and our method, the remaining meth-
ods can not effectively remove rain streaks in bright areas
in the red rectangles. While our model has a better structure
preservation than JORDER-E and PreNet, as shown in the
blue rectangles in Fig. 5. For the challenging Rain200H data
set, it is clear that JCAS fails to process heavy rain streaks due
tomodeling limitations. Since unsupervised training samples

1 https://www.photoshopessentials.com/photo-effects/photoshop-
weather-effects-rain/

makes the data distribution deviate from synthetic data, the
semi-supervised method SIRR generates obvious artifacts.
As shown in the red and blue rectangles, DDN, DID, RES-
CAN and SPANet are able to remove the rain streaks while
tending to over-smooth the results. JORDER-E, PreNet and
our model have similar global visual performance and out-
perform other methods. However, as shown in Figs. 6j and 7j,
our method is able to preserve more informative details. For
the relatively light rainy data setsDDN-Data andDID-Data,
all methods generate de-rained result with close visual qual-
ities, while our model contains less artifacts, which achieves
the best PSNR value. Moreover, we calculate average PSNR
and SSIM values for quantitative evaluation. By following
the strategy of JORDER-E (Yang et al. 2019), we calculate
both PSNR and SSIM values in the Y channel of YCbCr
space. As shown in Tables 1 and 2, our method has the best
overall results on both PSNR and SSIM, which is consistent
with visual results.

4.2 Real-World Data

To demonstrate the generalization ability of our method, we
conduct experiments on the recent public real-world rainy
dataset SPA-Data (Wang et al. 2019), which contains 1000
testing images with labels. Specifically, we first retrain all
deep learning-based methods on a disjoint synthetic data set
(Li et al. 2019c), and then directly test them on the SPA-
Data. Figure 11 shows one visual result and the rectangles
indicate that our network can simultaneously remove rain and
preserve object edges. Since this real-world data set contains
ground truth, we can quantitatively evaluate the de-rained
performance. As shown in Table 3, our method consistently
achieves the best results. We also show another comparison
on a real-world rainy image from theGoogle image searching
engine in Fig. 12. As can be seen, our model can remove rain
streaks, preserve feather details and reduce artifacts on the
bird leg. This experiment shows that our learned network,
which is trained on synthetic data, translates well to real-
world rainy images.

To provide realistic feedback and quantify the subjective
evaluation, we also constructed an independent user study.
In this experiment, we randomly select 200 de-rained results
from SPA-Data and display them on a screen. We then sep-
arately asked 20 participants to rank each image from 1
to 5 subjectively according to five measurements, i.e., the
overall rating, de-raining effect, artifacts reduction, clarity
perception and color preservation. The participants are given
instructions that color distortion and over de-raining arti-
facts should decrease the quality. The score 1 represents
the worst quality image and 5 represents the best quality
image. We show the radar chart of the five measurements in
Fig. 13. It is clear that our method outperforms other meth-
ods on de-raining performance and has promising results on
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(a) Input, 34.91 | 0.962 (b) JCAS, 34.09 | 0.920 (c) DDN, 34.07 | 0.937 (d) DID, 34.81 | 0.952 (e) RESCAN, 34.40 | 0.960

(f) JORDER-E, 37.14 | 0.979 (g) SIRR, 34.30 | 0.939 (h) PReNet, 37.79 | 0.981 (i) SPANet, 36.10 | 0.954 (j) Our, 37.71 | 0.981

Fig. 5 One visual comparisons with PSNR | SSIM values from the synthetic data set ‘Rain200L’

(a) Input, 13.39 | 0.350 (b) JCAS, 14.93 | 0.483 (c) DDN, 23.74 | 0.799 (d) DID, 22.28 | 0.847 (e) RESCAN, 24.96 | 0.833

(f) JORDER-E, 24.89 | 0.873 (g) SIRR, 21.84 | 0.628 (h) PReNet, 25.81 | 0.898 (i) SPANet, 21.63 | 0.827 (j) Our, 27.87 | 0.917

Fig. 6 One visual comparisons with PSNR | SSIM values from the synthetic data set ‘Rain200H’

other measurements. This gives additional support that our
GCNs-based network is able to improve the subjective visual
qualities of real-world data.

When dealing with more complex imaging conditions, an
intuitive solution is to cascade our model and other existing
algorithms. Figure 14 shows five examples by directly com-
bining our model with one image de-hazing method (Ren
et al. 2019). As can be seen, both rain streaks and hazy

effects are significantly eliminated. We believe that the per-
formance can be further improved by integrating physical
imaging models into our network.

4.3 Runtime and Parameter Numbers

The proposed algorithm is efficiency on both calculation and
storage. We use 100 images with a size of 1000 × 1000 for
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(a) Input, 16.70 | 0.683 (b) JCAS, 18.22 | 0.765 (c) DDN, 26.70 | 0.888 (d) DID, 27.09 | 0.904 (e) RESCAN, 27.96 | 0.903

(f) JORDER-E, 30.15 | 0.931 (g) SIRR, 18.05 | 0.728 (h) PReNet, 29.40 | 0.930 (i) SPANet, 26.57 | 0.915 (j) Our, 29.62 | 0.930

Fig. 7 One visual comparison with PSNR | SSIM values from the synthetic data set ‘Rain200H’

(a) Input, 29.79 | 0.920 (b) JCAS, 30.60 | 0.905 (c) DDN, 32.01 | 0.944 (d) DID, 29.35 | 0.942 (e) RESCAN, 34.85 | 0.946

(f) JORDER-E, 36.35 | 0.961 (g) SIRR, 26.47 | 0.849 (h) PReNet, 35.25 | 0.962 (i) SPANet, 35.58 | 0.962 (j) Our, 36.35 | 0.971

Fig. 8 One visual comparison with PSNR | SSIM values from the synthetic data set ‘DDN-Data’

evaluation. Comparisons on average runtime and parameter
numbers are shown in Table 4. According to the provided
codes, the JCAS and SPANet are tested on CPU and GPU,
respectively. Other deep learning-based methods are tested
on both CPU and GPU. Our method has a comparable GPU
runtime compared with other deep learning methods, and is
significantly faster than several deep models on a CPU. This
is because our model is able to explore more effective repre-
sentations, which leads to comparable results with tolerable
resource consumption.

5 Ablation Studies and Discussions

We provide ablation studies to explore the effect of each part
of our model over the challenging Rain200H (Yang et al.
2019).

5.1 Effect of GCN Blocks

Since introducing the GCN is the core of this paper, we
first test the effect of proposed two GCN blocks by com-
paring to the baseline network which only contains dilated
blocks. As shown in Table 5, adding the spatial GCN block
achieves an improvement of 1.51% and 3.02% on average
PSNR and SSIM, respectively. Similarly, the channel GCN
improves the baseline by 2.21% and 3.83%. The best results
are obtained by combining the two blocks together, resulting
in an improvement of 3.40% and 4.99%, respectively.

We also show a visual comparison in Fig. 15. As can be
seen in Fig. 15a, using only dilated blocks showpowerless for
preserving spatially long structures, i.e., the stripes on zebra.
In Fig. 15b, adding spatial GCN blocks can generate sharp
results, but obviouswhite artifacts appear on the zebra’s body.
While adding channel GCN blocks is able to avoid white
artifacts and generate clearer results than dilated blocks, it
still has a blur effect at the junction of black and white stripes
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(a) Input, 31.39 | 0.866 (b) JCAS, 24.73 | 0.803 (c) DDN, 26.67 | 0.914 (d) DID, 35.98 | 0.959 (e) RESCAN, 35.35 | 0.940

(f) JORDER-E, 36.79 | 0.968 (g) SIRR, 29.70 | 0.881 (h) PReNet, 30.46 | 0.957 (i) SPANet, 33.58 | 0.933 (j) Our, 38.72 | 0.967

Fig. 9 One visual comparison with PSNR | SSIM values from the synthetic data set ‘DID-Data’

Fig. 10 References of Figs. 5,6, 7, 8, 9,11

Table 1 Average PSNR values
of de-rained results on the three
synthetic data sets

JCAS DDN DID RESCAN JORDER-E SSIR PreNet SPANet Ours

Rain12 33.10 35.74 36.25 36.54 36.73 35.71 36.61 35.92 36.53

Rain200L 31.42 34.68 35.40 36.09 37.25 34.75 37.80 35.79 37.65

Rain200H 14.69 25.68 27.91 27.75 29.34 20.37 29.03 26.27 29.13

DDN-Data 26.80 29.99 30.84 31.18 32.79 28.44 32.63 31.35 32.13

DID-Data 25.16 30.95 31.65 32.35 32.48 31.97 33.01 31.94 33.53

The best and the second best results are boldfaced and underlined

in Fig. 15c. The best visual quality is obtained by jointly
utilizing the two GCN blocks, as shown in Fig. 15d.

In Fig. 16, we visualize some of the feature maps of
Fig. 17 to see which representations our proposed blocks
have learned. Here we show five representative features of
eachblock from the last unit. Tohighlight specific feature rep-
resentations learned by different blocks, we use the absolute
values of the image, normalize them to0 to 1, andonlydisplay
pixels with values greater than 0.5. Since the dilated convolu-
tion block receives the output of the previous unit directly, the
features F̂D from this block contain comprehensive represen-
tations of both rain streaks and the animal. This is consistent
with our intention to capture and fuse multi-scale local spa-
tial patterns. The features F̂S of the spatial GCN block have a
great response to the similar and repeated rain streaks, which

have obvious long connection structures in space. This is
in line with our expectations for the spatial GCN, that is,
to effectively capture long-range spatial structure informa-
tion. The features F̂C from the channel GCN block explore
correlations across channels to highlight object parts, i.e.,
the animal’s body and trunk in the image. This is similar
with high-level vision tasks that capture semantic features.
Therefore, unlike most existing deep CNNs-based methods
that only utilize local spatial features, introducing GCNs can
extract features from new dimensions, which allows our net-
work to learn and emphasize specific characteristics.
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Table 2 Average SSIM values
of de-rained results on the three
synthetic data sets

JCAS DDN DID RESCAN JORDER-E SSIR PreNet SPANet Ours

Rain12 0.930 0.951 0.956 0.957 0.963 0.950 0.960 0.958 0.964

Rain200L 0.917 0.967 0.962 0.970 0.975 0.969 0.981 0.965 0.983

Rain200H 0.499 0.857 0.872 0.864 0.890 0.599 0.898 0.865 0.902

DDN-Data 0.848 0.892 0.912 0.915 0.924 0.890 0.934 0.915 0.924

DID-Data 0.813 0.915 0.924 0.917 0.923 0.896 0.926 0.902 0.932

The best and the second best results are boldfaced and underlined

(a) Input, 26.17 | 0.894 (b) JACS, 27.31 | 0.911 (c) DDN, 27.95 | 0.916 (d) DID, 24.37 | 0.892 (e) RESCAN, 26.67 | 0.914

(f) JORDER-E, 26.59 | 0.905 (g) SIRR, 27.10 | 0.894 (h) PReNet, 26.58 | 0.899 (i) SPANet, 27.34 | 0.918 (j) Our, 32.19 | 0.958

Fig. 11 One visual comparison with PSNR | SSIM values from the real-world data set ‘SPA-Data’

Table 3 Average PSNR and
SSIM of de-rained results on the
real-world SPA-Data data set
(Wang et al. 2019)

JCAS DDN DID RESCAN JORDER-E SSIR PreNet SPANet Ours

PSNR 34.95 31.05 31.98 34.71 34.55 30.25 34.68 34.26 35.12

SSIM 0.945 0.949 0.936 0.952 0.950 0.938 0.950 0.952 0.957

Note that we train all the deep learning-based methods on the synthetic data set (Li et al. 2019c) and test on
the real-world SPA-Data

5.2 Effect of Successive Operations

Due to the effective propagation and reuse of information,
it is common to add more recurrent stages to bring better
performance. As shown in Fig. 17, with the increase of T ,
rain streaks are gradually removed and the image quality is
improved. We also test our model with different stage num-
bers and the PSNR and SSIM results are shown in Fig. 18. It
is clear that keeping increasing the stage number eventually
brings only limited improvement. Therefore, to balance the
effectiveness and efficiency, we select T = 5 as the default
stage number.

5.3 Kernel Number Versus Unit Number

We also test the impact of kernel number and unit number.
Specifically, we test the kernel numbers K ∈ {9, 18, 36} and
dilated block numbers L ∈ {8, 10, 12}. Quantitative results
are shown in Tables 6 and 7. It is clear that increasing ker-
nels and units can generate higher SSIM and PSNR. Adding
basic unit results in larger modeling capacity, which has a
greater advantage over increasing the number of kernels.
However, increasing K and L eventually brings only limited
improvement at the cost of storage and computation. Thus,
to balance the trade-off between performance and speed, we
choose K = 18 and L = 10 as our default setting.
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(a) Input (b) JACS

(c) DDN (d) DID

(e) RESCAN (f) JORDER-E

(g) SIRR (h) PReNet

(i) SPANet (j) Our

Fig. 12 One visual comparison on a real-world rainy image from
Google image searching engine. Please zoom in for a better visual-
ization

5.4 Effect of Loss Functions

We also test the impact of using the MSE and SSIM loss
functions. Figure 19 shows one visual comparison on the
Rain200H data set. As shown in the red rectangles, using
only MSE loss generates a de-rained image with obvious
artifacts. While the SSIM penalty is appropriate for simulta-
neously achieve artifacts reduction and rain removal. In Table
8, we show the quantitative evaluations of using different
loss functions. We observe that SSIM loss can significantly
improve both PSNR and SSIM. Therefore, we choose SSIM
as the default loss function. Other advanced loss functions,
such as GANs (Goodfellow et al. 2014) loss and perceptual
loss (Johnson et al. 2016), can also be utilized to further
improve the de-raining performance.

6 Discussions

6.1 Improvements

Our network ismainly constructed by the proposed basic unit
and successive operation, and these two components comple-
ment each other. On the one hand, the basic unit is able to
explore multi-dimension representations. This can implicity
alleviate the resource consumptions of successive operations,
e.g., using relative less parameters and successive operations
can generate good results. On the other hand, by adopting
successive operations, the extracted rich features can be fully
exploited to boost the de-raining performance. Moreover,
in this paper, we choose relatively simple calculations to
perform the proposed basic unit and successive operations.
However, other advanced technologies, e.g., squeeze-and
excitation networks (He et al. 2018) and network acceler-
ation (Zhang et al. 2018), could also be incorporated into our
model for better effectiveness and efficiency.

6.2 Limitations

Asour network is trained on synthetic datawith limited types,
the learned model might be less effective when input images
contain extremely complex rain streaks. Figure 20 shows an
examplewith extremely dense rain streaks in the input image.
In this case, our learned network cannot fully remove all rain
streaks due to the domain gap between training and testing
data. Therefore, our model cannot restore the image well
as shown in Fig. 20b. One possible solution is to apply the
domain adaptation technology (Shao et al. 2020) to reduce
the domain gap, which will be our future work.

6.3 Challenges

Another problem that needs to be solved in the computer
vision community is the gap between low-level vision and
high-level vision. In the recent article (Li et al. 2019c),
the authors find that no existing de-raining algorithms can
directly help high-level vision tasks. This may be due to
the fact that existing de-raining method only trained towards
the goal of low-level pixel regression, which ignore seman-
tic representations. Therefore, we also test our model as a
preprocessing for Clarifai,2 which is a commercial image
recognition system based on deep CNNs. We show two
results, one is synthetic rainy image from Rain200H data
set and the other is a real-world image from Google image
searching engine, in Fig. 21. As can be seen, our results are
recognized as “zebra” and “road” with the highest probabil-
ity, respectively. These results are consistent with the main
semantic information contained in the images. Moreover,

2 https://www.clarifai.com/
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(a) JCAS (b) DDN (c) DID (d) RESCAN

(e) JORDER-E (f) SIRR (g) PreNet (h) SPANet (i) Our

Fig. 13 Radar charts of average user study scores on overall rating, de-raining effect, artifacts reduction, clarity perception and color preservation.
The score 1 represents the worst quality and 5 represents the best quality

Fig. 14 Visual results of real-world rainy image with hazy appearance. Top input rainy images; middle: de-hazed results by Ren et al. (2019),
bottom de-hazed and de-rained results

Table 4 Comparisons on runtime (in seconds) and parameter numbers

JCAS DDN DID RESCAN JORDER-E SSIR PreNet SPANet Ours

CPU 587.42 3.21 77.24 70.43 207.03 3.51 35.66 — 24.55

GPU — 0.34 0.97 1.53 1.74 0.47 0.97 0.93 1.02

# Params — 58,175 372,839 54,735 4,169,024 175,736 168,963 283,716 167,739

SPANet code is based on CuPy library and can only be run on GPU

as shown in Fig. 16d, the proposed channel GCN is able
to extract correlations between more semantic features like
animal’s body and trunk. This implies that our network archi-
tecture has the potential value of connecting low-level and
high-level vision tasks. We take this challenging problem as
our future work.

Table 5 Comparison of different GCN blocks

PSNR SSIM

Baseline 28.54 0.861

Baseline + spatial GCN 28.97 0.887

Baseline + channel GCN 29.05 0.894

All 29.13 0.902
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(a) Only dilated blocks (b) Dilated + spatial GCN blocks

(c) Dilated + channel GCN blocks (d) All blocks

Fig. 15 Visual comparison on the effect of GCN blocks

7 Extension: JPEG Artifacts Reduction

Our model is perhaps more general than we presented it as
being. Here we extend our model to another typical image
restoration task: JPEG compression artifacts reduction.

We use both the training set and testing set from BSD500
(Arbelaez et al. 2010) as our trainingdata. Thedisjoint valida-
tion set is used for testing. We use the Matlab JPEG encoder
to generate JPEG compressed images by setting the input
quality value to 10, 20 and 30. Since our network is able to
capture multi-scale and multi-dimension representations, we
only train a single model to handle all three JPEG qualities
to demonstrate the effectiveness of our method.

We compare our network with four learning-based meth-
ods, i.e., Artifacts Reduction Convolutional Neural Network
(ARCNN) (Dong et al. 2015), Trainable Nonlinear Reaction
Diffusion (TNRD) (Chen and Pock 2016), Denoising Con-
volutional Neural Network (DnCNN) (Zhang et al. 2017)
and Learning Parameterized Image Operators (LPIO) (Fan
et al. 2018). Figure 22 shows one visual comparison on a
JPEG compressed image with quality = 10. As shown in
the red rectangles, our model is able to simultaneously arti-
facts reduction and details preservation.We also calculate the
SSIM and PSNR-B (Yim and Bovik 2010) for quantitative
assessment. PSNR-B is recommended (Dong et al. 2015) for
use in this problem since it is designed to be more sensitive
to blocking artifacts. The quantitative results are shown in
Tables 9 and 10. Our method has the best results on all JPEG
qualities. We believe that our model will be motivated for
other low-level vision tasks.

(a) Dilated convolution block F̂D

(b) Spatial GCN block F̂S

(c) Channel GCN block F̂C

Fig. 16 Visualizations of learned feature maps from different blocks.
We normalize all feature for a better visual effect. The features of dilated
convolution blocks contain comprehensive representations. While the

spatial GCN block and the channel GCN block respectively explore the
representations with specific characteristics, that is, spatial structure
information and object content information
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(a) Ground truth (b) Input (c) T = 1 (d) T = 2

(e) T = 3 (f) T = 4 (g) T = 5 (h) T = 6

Fig. 17 One visual example by using different stage number T
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(a) PSNR performance curve
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(b) SSIM performance curve

Fig. 18 Curves of PSNR and SSIM values of different stage number T
over the Rain200H data set

Table 6 PSNR results using different kernel numbers and unit numbers

L = 8 L = 10 (default) L = 12

K = 9 27.93 28.10 28.70

K = 18 (default) 28.81 29.13 29.31

K = 36 28.96 29.24 29.41

Table 7 SSIM results using different kernel numbers and unit numbers

L = 8 L = 10 (default) L = 12

K = 9 0.879 0.882 0.887

K = 18 (default) 0.892 0.902 0.904

K = 36 0.897 0.905 0.907

8 Conclusions

In this paper, we handle the single image de-raining via a
graph convolutional network-based model to extract multi-
dimension representations. Specifically, we first introduce a
dilated convolution block to capture multi-scale local pat-
terns along the local spatial dimensions, and then propose
two GCN blocks to extract contextual information along
the global spatial dimensions and channel dimensions. The
obtained rich features are further combined with recurrent
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(a) Ground truth (b) Input (c) MSE loss (d) SSIM loss

Fig. 19 De-raining results by using different loss functions. Using SSIM loss is able to generate results with less artifacts as shown in (d)

Table 8 Quantitative results using different loss functions

MSE loss SSIM loss

PSNR 28.43 29.13

SSIM 0.887 0.902

(a) Input (b) Our result

Fig. 20 Limitations of the proposed method. Our learned model is not
effective for processing images with extremely heavy rain streaks

operations to jointly explore and exploit effective represen-
tations. Experiments verify the superiority of our method
on both synthetic and real-world data sets. In addition, our
network structure is easy to implement and has a high com-
putational efficiencywith promising de-raining performance.
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(a) Synthetic rainy image (b) Real-world rainy image

(c) Our result of (a) (d) Our result of (b)

Fig. 21 Preprocessing for image recognition on the Clarifai platform. a and b are recognized as “stripe” and “no person”with the highest probability,
respectively. c and d, i.e., our results are accurately recognized as “zebra” and “road” with the highest probability, respectively

(a) Ground truth, PSNR-B|SSIM (b) JPEG, 27.72 | 0.738 (c) ARCNN, 28.91 | 0.768

(d) TNRD, 28.94 | 0.769 (e) DnCNN, 29.16 | 0.776 (f) LPIO, 27.17 | 0.764 (g) Our, 29.39 | 0.783

Fig. 22 One visual comparison on a JPEG compressed image with quality = 10 from the BSD500 data set

Table 9 Average SSIMvalues comparisons on JPEGartifacts reduction

ARCNN TNRD DnCNN LPIO Ours

Quality = 10 0.793 0.799 0.803 0.802 0.824

Quality = 20 0.852 0.858 0.861 0.857 0.873

Quality = 30 0.881 0.883 0.886 0.884 0.891

The best and the second best results are boldfaced and underlined

Table 10 Average PSNR-B values comparisons on JPEG artifacts
reduction

ARCNN TNRD DnCNN LPIO Ours

Quality = 10 28.76 29.04 29.13 29.04 29.41

Quality = 20 30.59 31.05 31.19 31.12 31.53

Quality = 30 31.98 32.24 32.38 32.28 32.60

The best and the second best results are boldfaced and underlined
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