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Abstract

Deep convolutional neural networks (CNNs) have become
dominant in the single image de-raining area. However, most
deep CNNs-based de-raining methods are designed by stack-
ing vanilla convolutional layers, which can only be used to
model local relations. Therefore, long-range contextual in-
formation is rarely considered for this specific task. To ad-
dress the above problem, we propose a simple yet effective
dual graph convolutional network (GCN) for single image
rain removal. Specifically, we design two graphs to perfor-
m global relational modeling and reasoning. The first GC-
N is used to explore global spatial relations among pixel-
s in feature maps, while the second GCN models the glob-
al relations across the channels. Compared to standard con-
volutional operations, the proposed two graphs enable the
network to extract representations from new dimensions. To
achieve the image rain removal, we further embed these two
graphs and multi-scale dilated convolution into a symmetri-
cally skip-connected network architecture. Therefore, our d-
ual graph convolutional network is able to well handle com-
plex and spatially long rain streaks by exploring multiple rep-
resentations, e.g., multi-scale local feature, global spatial co-
herence and cross-channel correlation. Meanwhile, our model
is easy to implement, end-to-end trainable and computation-
ally efficient. Extensive experiments on synthetic and real da-
ta demonstrate that our method achieves significant improve-
ments over the recent state-of-the-art methods.

Introduction
Rain can severely impair the performance of many comput-
er vision systems, e.g., road surveillance, autonomous driv-
ing and consumer camera. Effectively removing rain streak-
s from images is an important task in the computer vision
community. To address the de-raining problem, many algo-
rithms have been designed to remove rain streaks from s-
ingle rainy images. Unlike video based methods (Garg and
Nayar 2007; Barnum, Narasimhan, and Kanade 2010; Ren
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et al. 2017; Wei et al. 2017; Li et al. 2018b; Yang et al.
2020b), which have useful temporal information, single im-
age de-raining is a significantly harder problem (Li et al.
2019; Wang et al. 2020a; Yang et al. 2020a). Furthermore,
since success in single images can be extended to video, sin-
gle image de-raining has received much research attention.

Related Work
In general, single image de-raining methods can be catego-
rized into two classes: model-driven and data-driven. Model-
driven methods are designed by using handcrafted image
features to describe physical characteristics of rain streaks,
or exploring prior knowledge to constrain the ill-posed prob-
lem. In (Kim et al. 2013), the de-rained image is obtained
by filtering a rainy image with a nonlocal mean smooth-
ing filter. Several model-driven methods adopt various priors
to separate rain streaks form rainy images. For example, in
(Kang, Lin, and Fu 2012), morphological component analy-
sis based dictionary learning is used to remove rain streaks
in high frequency regions. To recognize rain streaks, a self-
learning based image decomposition method is introduced
in (Huang et al. 2014). In (Luo, Xu, and Ji 2015), based on
image patches, a discriminative sparse coding is proposed to
distinguish rain streaks from non-rain content. In (Chen and
Hsu 2013; Chang, Yan, and Zhong 2017), low-rank assump-
tions are used to model and separate rain streaks. A GMM
based patch prior (Li et al. 2016) is introduced to accom-
modate multiple orientations and scales of rain streaks. In
(Wang et al. 2017), the authors use a hierarchical scheme
combined with dictionary learning to progressively remove
rain and snow. In (Gu et al. 2017), the authors utilize convo-
lutional analysis and synthesis sparse representation to ex-
tract rain streaks. In (Zhu et al. 2017), three priors are ex-
plored and combined into a joint optimization process for
single image rain removal.

Recently, data-driven methods using deep learning have
dominated high-level vision tasks (He et al. 2016; Huang
et al. 2017; Cao et al. 2018) and low-level image processing
(Eigen, Krishnan, and Fergus 2013; Ren et al. 2016; Zhang
et al. 2018a,b; Zhang and Patel 2018a; Qin et al. 2020; Guo
et al. 2020; Ren et al. 2020). In (Fu et al. 2017a), the au-
thors use domain knowledge and train a 3 layers network
on high-frequency parts to simplify the learning processing.
This method was improved in (Fu et al. 2017b) by combin-
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ing ResNet (He et al. 2016) and a global skip connection.
Other methods focus on designing advanced network struc-
ture to improve de-raining performance. In (Yang et al. 2017,
2019), a recurrent dilated network with multi-task learning
is proposed for joint rain streaks detection and removal. In
(Li et al. 2018c), the recurrent neural network architecture
is adopted and combined with squeeze-and-excitation (SE)
blocks (Hu, Shen, and Sun 2018) for rain removal. To incor-
porate discriminative performance into the loss function, the
generative adversarial networks (Goodfellow et al. 2014) is
utilized in (Zhang, Sindagi, and Patel 2019) to improve vi-
sual quality. In (Zhang and Patel 2018b), a density aware
multi-stream dense CNN is introduced to automatically de-
termine the rain-density information. To capture global spa-
tial dependencies for accurate rain streaks estimation, non-
local operations are utilized to design end-to-end de-raining
networks (Li et al. 2018a; Yu et al. 2019). To handle heavy
rainy images with hazy effect, the authors of (Li, Cheong,
and Tan 2019) design a deep network based on the physical
model and insert auxiliary losses to train it. Similar to (Li,
Cheong, and Tan 2019), the authors of (Hu et al. 2019) for-
mulate the rain imaging process based on scene depth, and
then introduce a depth-guided attention mechanism to han-
dle heavy rain streaks. To take the location information of
rain drops into consideration, an uncertainty guided multi-
scale residual learning network is proposed in (Yasarla and
Patel 2019) to learn the rain content at different scales. In
(Wei et al. 2019), a semi-supervised learning paradigm is
proposed to improve the generalization ability for unseen
rain types. By unfolding a shallow ResNet repeatedly, a sim-
ple yet effective network architecture is proposed by (Ren
et al. 2019) with progressive recurrent operations. In (Wang
et al. 2019), a spatial attentive network is introduced to re-
move rain streaks in a local-to-global fashion. In (Zhu et al.
2019), a training strategy using unpaired data is proposed to
achieve rain removal. Recently, in (Yang et al. 2020c), a frac-
tal band learning network with cross-scale self-supervision
is proposed to extract scale-robust rain features. In (Deng
et al. 2020), a two-stage context aggregation network ar-
chitecture is designed to well restore details. In (Yasarla,
Sindagi, and Patel 2020), based on the Gaussian process,
a semi-supervised learning for image de-raining is intro-
duced. In (Wang et al. 2020b), a novel interpretable network
is introduced to fully integrate conventional convolutional
dictionary-based methods and deep learning.

Our Contributions
Despite the noticeable progress has been made in single im-
age rain removal, most existing deep models adopt convolu-
tional neural networks (CNNs) as backbones. While vanil-
la CNNs are only capable to model local spatial informa-
tion, long-range dependencies for contextual modeling are
ignored. To obtain larger receptive fields, several methods
(Li et al. 2018c; Yang et al. 2019) adopt the dilated con-
volution (Yu and Koltun 2016). However, since the convo-
lution operation is essentially a process of local weighted
summation, what we get from dilated convolution is still lo-
cal spatial information, i.e., obtaining one pixel value from
one finite spatial area. Another direction is to combine C-

NNs and recurrent neural networks (RNNs) (Li et al. 2018c;
Ren et al. 2019). Due to the repeated features utilization,
the de-raining performance can be boosted. However, these
methods focus on propagating spatial information without
considering the correlation between channels. Therefore, for
single image de-raining, the aspect of fully reasoning global
spatial coherence and channel correlation has not been no-
ticed. On the other hand, GCN (Kipf and Welling 2017) was
proposed to effectively model long-range contextual infor-
mation and has been used for various high-level vision tasks
(Johnson, Gupta, and Fei-Fei 2018; Li et al. 2018d; Zha et al.
2020; Zhu et al. 2020). For image and video, the most wide-
ly used form of GCNs is the non-local network (Wang et al.
2018). However, directly implementing non-local operation
requires a huge memory cost (Li et al. 2018a; Yu et al. 2019),
which limits its practical values. In addition, there are stil-
l few methods to explore the potential value of GCNs for the
image de-raining.

To address the above limitations, we propose a dual graph
convolutional network to explore multi-dimension informa-
tion for the tough image de-raining. Specifically, we first de-
sign two lightweight graphs to extract relation-aware fea-
tures. The spatial GCN is derived from the non-local opera-
tion (Wang et al. 2018) and used to explore global spatial re-
lationships between pixels. The channel GCN is designed to
explore global interdependencies across channels of the fea-
ture map. Then, these two modules are combined with the
dialed convolution to form the basic unit, which is further
embedded in a symmetrically skip-connected architecture
as the final de-raining network. In this way, our proposed
network is able to extract rich representations from differ-
ent dimensions. For example, utilizing dialed convolutional
networks and spatial GCN can explore multi-scale local fea-
tures and global spatial information. While the channel GCN
can capture correlations among feature maps. Moreover, s-
ince the proposed spatial-wise graph and channel-wise graph
are orthogonal, these two modules can provide complemen-
tary information. This makes our networks generate better
task-specific feature representations to help boost the de-
raining performance.

Our contributions are three-fold:

• We propose a dual graph convolutional network for single
image rain removal. Our method integrates both local and
global modeling into a single network, which allows it to
explore both local spatial patterns and global contextual
information.

• We propose two orthogonal graphs that can efficiently
compute spatial coherence and channel correlation. By
combining the two graphs and multi-scale dilated convo-
lutions, we present a basic unit to form the de-raining net-
work. This basic unit is able to extract relation-aware in-
formation for learning better task-specific representations.

• Our network has advantages of easy implementation,
end-to-end training and efficient calculation. Experiments
demonstrate that our model favorably performs against
the state-of-the-art methods on both synthetic and real-
world data sets.
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Figure 1: The overall architecture of our dual graph convolutional network for single image rain removal. The network consists
of several basic units, in which multi-scale dilated convolutional modules and global GCN modules are adopted to capture both
local and global information. Symmetrical skip-layer connections are deployed to pass shallow features to deep layers.

Methodology
Figure 1 illustrates the overall architecture of our dual graph
convolutional network. To summarize at a high level, we
design a basic unit contain multi-scale dilated convolutions
with two graph modules. This unit is further embedded into
a symmetrically skip-connected network architecture, which
is able to pass image details from shallow layers to deep lay-
ers to benefit image restoration tasks (Mao, Shen, and Yang
2016). Below we detail our proposed method.

Overall Network Architecture
We design our dual graph convolutional network based on
symmetrically skip-connected network architecture, and it
takes a single rainy image X as input and predicts its de-
rained version Y. Our network contains two feature extrac-
tion layers, several basic units and two reconstruction layers.
The feature extraction layers are designed to extract shallow
features from the rainy input using standard 3 × 3 convolu-
tional operations. As shown in Figure 1, these two shallow
features are further propagated to deeper layers using skip-
connections to preserve raw information. The reconstruction
layers are used to generate the de-rained image Y by

Y = X+R = X+ f(X). (1)

Note that the direct output of our network f(·) is the residual
R, which is a common technique used in existing methods
(Wei et al. 2019; Zhang et al. 2020) to ease learning. The
basic units, which are constructed by our proposed modules,
will be detailed in subsequent sections.

Proposed Modules
For the specific image rain removal task, we propose one
dilated convolutional module and two GCN modules to learn
representations from multiple dimensions.

Dilated Convolutional Module. In general, stacking
vanilla convolutional layers with a 3×3 kernel size can grad-
ually increase receptive fields. However, rain streaks and ob-
ject structures are spatially long, which requires larger re-
ceptive fields. Therefore, we utilize the dilated convolution

(Yu and Koltun 2016) to rapidly increase receptive fields.
Dilated convolutions is able to increase the contextual area
while preserving resolution and reducing parameters burden.
The features obtained by dilated convolutions are defined as

FDF = KDF ∗ Fin + b, (2)

where DF is the dilation factor, K is the convolutional k-
ernel, Fin is the input feature, FDF is the output feature of
convolution with DF .

To obtain multi-scale spatial features, we further design a
parallel structure as shown in Figure 2. Specifically, we de-
sign two paths in each dilated module. One path consists of
two standard convolutional layers to capture small-scale s-
patial patterns, while the other one contains two dilated con-
volutional layers to rapidly increase the receptive field. The
output of this module is generated by fusing the five fea-
tures using one 1 × 1 convolutional operation. In this way,
the fused features F̂DCM contains information of differen-
t receptive fields, i.e., 3 × 3, 5 × 5, 7 × 7 and 13 × 13.
This enables the dilated module to effectively extract multi-
scale local spatial features. Although this module can ob-
tain multi-scale local spatial representations, the information
contained in the fused features is still from a local spatial re-
gion. Therefore, we further propose two global GCN mod-
ules to learn representations of global spatial coherence and
channel correlation, respectively.

Spatial GCN Module. We first design a spatial GCN
module to model the global spatial coherence. The motiva-
tion of this module is to explore the relation between one
pixel and all pixels in the feature map. Let a feature map be
F ∈ RHW×N , where N is the number of channel, H and
W are the height and width of F, respectively. The graph
convolution is defined as (Kipf and Welling 2017)

FGCN = AFW, (3)

where A is the adjacency matrix and W is the weight ma-
trix. Similar with the non-local network (Wang et al. 2018),
we use three 1× 1 convolution layers, θ(·), ν(·) and ξ(·), on
the input feature map to reduce the channel number from N
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Figure 2: Architectures of our proposed modules which are
used to form the basic unit. The dilated convolutional mod-
ule aims to capture multi-scale local feature representations.
The spatial and channel GCN modules focus on exploring
global contextual information along two orthogonal dimen-
sions.

⊗
denotes matrix multiplication.

to N
2 . As shown in Figure 2, the new feature is defined in the

form of residual learning

FsGCN = Fin +AsGCNFsWsGCN

= Fin + θ(Fin)ν(Fin)
>ξ(Fin)WsGCN , (4)

where FsGCN is output of spatial GCN module, > is the
transpose operation. θ(·)ν(·)> is performed by matrix mul-
tiplication and can be seen as the adjacency matrix AsGCN .
Note that the term (θ(·)ν(·)>)ξ(·) can be re-ordered to
θ(·)(ν(·)>ξ(·)) according to the associative rule. Compared
with the generic non-local module (Wang et al. 2018) which
calculates a large measurement matrix with size of HW ×
HW , using the re-ordering can significantly reduce compu-
tation complexity from O((HW )2) to O(HW ). As shown
in Figure 3, our spatial GCN module is nearly four times
faster on both CPU and GPU than the non-local module
of NLEDN (Li et al. 2018a). We use softmax operations to
avoid numerical instabilities (Chen et al. 2018). The weight-
ing process of WGSM is conducted by using one 1× 1 con-
volution layer to perform a hidden-to-output operation. This
spatial GCN module allows the network to produce coher-
ent predictions that consider all pixels, which benefits for
extracting information about spatially long rain streaks.

Channel GCN Module. In addition to exploring global
spatial coherence, we also design a channel GCN module to
reason channel correlations of the feature map. We model
our channel GCN module as

FcGCN = Fin + φ(F̂c)

= Fin + φ(AcGCNFcWcGCN ), (5)

where AcGCN is the adjacency matrix measuring the rela-
tions of the graph, and WcGCN is the weight matrix.

In practice, to aggregate information from different chan-
nels, we adopt two 1 × 1 convolutions κ(·) and ζ(·) on the
input feature Fin, where κ(Fin) ∈ RHW×N

4 and ζ(Fin) ∈
RHW×N

2 . Then a new feature Fc that represents the channel

Figure 3: Runtime comparison between NLEDN non-local
module (Li et al. 2018a) and our spatial GCN module. Note
that the measurement unit of CPU is 10 times that of GPU.

correlation is given by

Fc = softmax(κ(Fin)
>ζ(Fin)). (6)

From the view of graph, the size of feature Fc is N
4 ×

N
2 ,

which means it contains N
4 nodes, and the dimension of each

node is N
2 . For this module, we construct a fully-connected

graph with the adjacency matrix AcGCN ∈ RN
4 ×

N
4 and the

weights WcGCN ∈ RN
2 ×

N
2 on the new feature Fc to reason

the channel correlation. As shown in Figure 2, the calcula-
tion of this module is defined by

F̂c = (I+AcGCN )FcWcGCN

= (I+AcGCN )(κ(Fin)
>ζ(Fin))WcGCN , (7)

where the adjacency matrix AcGCN and the weight
WcGCN are implemented by 1D convolutions and learned
from data. We follow (Chen et al. 2019) and utilize identity
matrix I to propagate the nodes, which is similar with the
Laplacian regularization (Zhang et al. 2014).

Since the size of generated graph F̂c is N
4 ×

N
2 , we add

one function φ(·) to perform the hidden-to-output operation.
Specifically, we first multiply ζ(Fin) by the generated graph
F̂c and then utilize one 1× 1 convolutional layer to increase
the number of channel to N . In this way, the size of the out-
put FcGCN is HW ×N , so that it can participate in subse-
quent operations. By deploying the proposed channel GCN
module into the basic unit, our model is allowed to capture
correlations among channels of the feature map.

Dual Graph Convolutional Network
Based on the proposed modules, we construct the basic unit
to form our dual graph convolutional network for single im-
age rain removal as shown in Figure 1. Specifically, in each
unit, we first deploy the spatial GCN module to capture glob-
al spatial information from previous unit. Then, these glob-
al spatial information is sent into the dilated convolutional
module to assist it to extract multi-scale local spatial fea-
tures. Finally, to obtain content information that is comple-
mentary to spatial information, we employ the channel GC-
N module to explore the correlation among the features that
contain rich global and local spatial representations. Based
on the above description, the process of our basic unit is

Funit = Fin + cGCN(DCM(sGCN(Fin))), (8)
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where sGCN(·), DCM(·) and cGCN(·) denote spatial
GCN module, dilated convolutional module and channel
GCN module, respectively. We utilize 11 basic units to con-
struct the de-raining network. In addition, we adopt symmet-
ric skip-connections to link shallow and deep layers. This
can not only avoid the gradient vanishing, but also propa-
gate image detail to improve the de-raining performance.

Loss Function
The most widely used loss function for training a network
is mean squared error (MSE). However, MSE usually gen-
erates over-smoothed results because of its `2 penalty. To
address this drawback, we adopt the mean absolute error
(MAE) to balance rain removal and detail preservation

L =
1

M

M∑
i=1

‖Yi −Ygt,i‖1, (9)

where M is the number of training data, Y and Ygt denote
the output de-rained image and ground truth, respectively.

Implementation Details
We set the sizes of the kernels in fusion operations and GCN
modules to 1×1 and the rest to 3×3. The number of feature
maps is 72 for all convolutions. The non-linear activation is
ReLU (Krizhevsky, Sutskever, and Hinton 2012) and used in
the dilated convolutional module. We use TensorFlow (Aba-
di et al. 2016) and Adam (Kingma and Ba 2014) with a mini-
batch size of 10 to train our network. The training images are
cropped into 100 × 100 patch pairs with horizontal flipping
for data augmentation. We fix the learning rate to 0.0001 and
terminate training after 300 epochs.

Experiments
Baseline Methods. We compare our network with three
model-based methods: DSC (Luo, Xu, and Ji 2015), GM-
M (Li et al. 2016), JCAS (Gu et al. 2017), and eleven deep
learning-based methods: DDN (Fu et al. 2017b), DID-MDN
(Zhang and Patel 2018b), RESCAN (Li et al. 2018c), N-
LEDN (Li et al. 2018a), JORDER-E (Yang et al. 2019), ID-
CGAN (Zhang, Sindagi, and Patel 2019), SIRR (Wei et al.
2019), PReNet (Ren et al. 2019), SPANet (Wang et al. 2019),
FBL (Yang et al. 2020c) and RCDNet (Wang et al. 2020b).

Synthetic Data
We use five representative synthetic data sets provided by
GMM (Li et al. 2016), JORDER-E (Yang et al. 2019), DDN
(Fu et al. 2017b) and DID-MDN (Zhang and Patel 2018b),
respectively. These five data sets were generated using d-
ifferent synthetic strategies. The GMM data set contains
12 light rainy images. The JORDER-E dataset contains t-
wo subsets, each with 200 testing images, which have light
rain streaks and challenging heavy rain streaks, respectively.
The rest two data sets contain 1400 and 1200 testing im-
ages, respectively. We denote them as Rain12, Rain200L,
Rain200H, DDN-Data and DID-Data.

We calculate PSNR and SSIM (Wang et al. 2004) for the
quantitative evaluation. Note that as the human visual sys-
tem is sensitive to the Y channel of a color image in YCbCr

space, we compute PSNR and SSIM based on this lumi-
nance (Y) channel (Yang et al. 2017). As shown in columns
of Table 1, our method has the best overall results in terms
of PSNR and SSIM on the five synthetic data sets.

We also show three visual results with different rain ap-
pearances in Figure 4. For the challenging Rain200H data
set, it is clear that JCAS fails to process heavy rain streak-
s due to modeling limitations. Other deep learning-based
methods except NLEDN and RCDNet are able to remove
the rain streaks while tending to over-smooth the results. In
addition, our method has a better detail recovery than N-
LEDN and RCDNet. For the relatively light rainy data sets
DDN-Data and DID-Data, all methods generate de-rained
results with close visual qualities. While our method is able
to generate clearer object content, e.g., the cloth in the bot-
tom left corner and the rope in the upper right corner. This
is because our method also considers the channel relation-
s to extract informative content. These visual comparisons
demonstrate that our dual GCN achieves a good trade-off
between rain removal and content preservation.

Real-world Data
To test the performance of our method in real scenarios, we
conduct experiments on the recent public real-world rainy
data set SPA-Data (Wang et al. 2019), which contains nearly
0.64 million rainy/clean image pairs for training and 1000
pairs for testing. Figure 5 shows one visual result and the
rectangles indicate that our network can remove rain streaks
while retaining more detailed information. Since this real-
world data set contains ground truth, we can quantitatively
evaluate the de-rained performance. As shown in the last row
of Table 1, our method consistently achieves the best results.

To demonstrate the generalization ability of our method,
we also conduct experiments on the real-world data set
(Wang et al. 2019), which is different from synthetic da-
ta and collected from Internet without ground truth. As
shown in Figure 6, when dealing with light rain streaks in
real-world scenarios, other comparison methods can remove
apparent rain streaks while blur some image content and
textures. On the contrary, our network can simultaneously
achieve rain streaks removal and details preservation. This
experiment shows that our learned network can well gener-
alize to unseen real-world data types.

Runtime and Parameter Numbers
Our network is able to achieve a good trade-off between
calculation and storage. We use 100 images with a size of
1000 × 1000 for evaluation. Comparisons on average run-
time and parameter numbers are shown in Table 2. It is clear
that our method has a comparable GPU runtime compared
with other deep learning methods, and is significantly faster
than several deep models on a CPU. This is because our net-
work can extract more effective representations, which leads
to promising results with tolerable resource consumption.

Ablation Study
Since the two GCN modules are the core of our method,
to demonstrate their necessity and effectiveness, we provide
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Methods
Data sets Rain12 Rain200L Rain200H DID-Data DDN-Data SPA-Data

DSC (Luo, Xu, and Ji 2015) 30.07 | 0.8664 27.16 | 0.8663 14.73 | 0.3815 24.24 | 0.8279 27.31 | 0.8373 34.95 | 0.9416
GMM (Li et al. 2016) 32.14 | 0.9145 28.66 | 0.8652 14.50 | 0.4164 25.81 | 0.8344 27.55 | 0.8479 34.30 | 0.9428
JCAS (Gu et al. 2017) 33.10 | 0.9302 31.42 | 0.9173 14.69 | 0.4999 25.16 | 0.8509 26.81 | 0.8632 34.95 | 0.9453
DDN (Fu et al. 2017b) 35.74 | 0.9514 34.68 | 0.9671 26.05 | 0.8056 30.97 | 0.9116 30.00 | 0.9041 36.16 | 0.9457
DID-MDN (Zhang and Patel 2018b) 36.25 | 0.9562 35.40 | 0.9618 26.61 | 0.8242 31.30 | 0.9207 31.49 | 0.9146 38.16 | 0.9763
RESCAN (Li et al. 2018c) 36.54 | 0.9568 36.09 | 0.9697 26.75 | 0.8353 33.38 | 0.9417 31.94 | 0.9345 38.11 | 0.9707
NLEDN (Li et al. 2018a) 37.13 | 0.9614 39.13 | 0.9821 29.79 | 0.9005 34.68 | 0.9583 32.15 | 0.9398 42.97 | 0.9835
JORDER-E (Yang et al. 2019) 36.73 | 0.9634 37.25 | 0.9752 29.35 | 0.8905 33.98 | 0.9502 32.01 | 0.9321 40.78 | 0.9801
ID-CGAN (Zhang, Sindagi, and Patel 2019) 35.97 | 0.9543 35.19 | 0.9694 25.02 | 0.8430 30.25 | 0.9217 29.06 | 0.9162 38.47 | 0.9624
SIRR (Wei et al. 2019) 35.71 | 0.9501 34.75 | 0.9690 26.55 | 0.8190 30.57 | 0.9104 30.01 | 0.9078 35.31 | 0.9411
PReNet (Ren et al. 2019) 36.61 | 0.9604 37.80 | 0.9814 29.04 | 0.8991 33.17 | 0.9481 32.60 | 0.9459 40.16 | 0.9816
SPANet (Wang et al. 2019) 35.92 | 0.9582 35.79 | 0.9653 26.27 | 0.8666 33.04 | 0.9489 29.85 | 0.9117 40.24 | 0.9811
FBL (Yang et al. 2020c) 37.86 | 0.9612 39.02 | 0.9827 30.07 | 0.9021 34.26 | 0.9320 33.05 | 0.9334 42.80 | 0.9824
RCDNet (Wang et al. 2020b) 37.71 | 0.9649 39.17 | 0.9885 30.24 | 0.9048 34.08 | 0.9532 33.04 | 0.9472 43.36 | 0.9831
Ours 38.99 | 0.9703 40.73 | 0.9886 31.15 | 0.9125 34.37 | 0.9620 33.01 | 0.9489 44.18 | 0.9902
ideal value +∞ | 1.0000 +∞ | 1.0000 +∞ | 1.0000 +∞ | 1.0000 +∞ | 1.0000 +∞ | 1.0000

Table 1: Comparison of average PSNR | SSIM values on six benchmark data sets. The best and the second best results are
boldfaced and underlined.

An example form ‘Rain200H’

Input JCAS DDN DID-MDN RESCAN JORDER-E NLEDN

SIRR PreNet SPANet FBL RCDNet Our Ground truth

An example form ‘DID-Data’

Input JCAS DDN DID-MDN RESCAN JORDER-E NLEDN

SIRR PreNet SPANet FBL RCDNet Our Ground truth

An example form ‘DDN-Data’

Input JCAS DDN DID-MDN RESCAN JORDER-E NLEDN

SIRR PreNet SPANet FBL RCDNet Our Ground truth

Figure 4: Visual comparisons on different synthetic data sets. Please zoom in for better visualization.

An example form ‘SPA-Data’

Input JCAS DDN DID-MDN RESCAN JORDER-E NLEDN

SIRR PreNet SPANet FBL RCDNet Our Ground truth

Figure 5: One visual comparison on the real-world data set ‘SPA-Data’.
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Input JCAS DDN RESCAN JORDER-E SIRR SPANet FBL RCDNet Our

Figure 6: Visual comparisons on the Internet data set (Wang et al. 2019).

DSC GMM JCAS DDN DID-MDN RESCAN NLEDN JORDER-E ID-CGAN SSIR PreNet SPANet FBL RCDNet Ours

CPU 198.32 681.81 587.46 3.21 77.24 70.43 48.52 207.03 15.47 3.51 95.66 — 243.73 34.55 18.11
GPU — — — 0.34 0.77 1.53 0.84 1.74 0.37 0.47 0.69 0.43 0.41 0.57 0.31
# Params — — — 58.2K 0.37M 54.7K 1.01M 4.17M 8.47M 0.18M 0.17M 0.28M 3.70M 3.17M 2.73M

Table 2: Comparisons on runtime (seconds) and parameter numbers. SPANet uses CuPy library and can only be run on GPU.

Metrics
Settings Baseline Baseline + cGCN Baseline + sGCN Final Network

PSNR 29.13 30.53 30.61 31.15

SSIM 0.8892 0.9086 0.9103 0.9125

Table 3: Ablation study on the effect of our GCN modules.

Kernel #
Unit #

L = 7 L = 11 L = 15

K = 36 29.17 30.47 30.79
K = 72 30.81 31.15 31.23
K = 108 30.95 31.24 31.37

Table 4: PSNR values on different parameter settings.

the ablation study and compare our network with its three
variants over the challenging Rain200H data set. As shown
in Table 3, compared to the baseline model, which only con-
tains dilated convolutional modules and skip-connections,
adding the channel GCN module achieves an improvement
of 4.80% and 2.18% on average PSNR and SSIM, respec-
tively. Similarly, the spatial GCN module improves the base-
line by 5.08% and 2.37%. This is because the spatial GCN
module is beneficial to remove spatially long rain streaks
and preserve object structures, which helps improve SSIM
performance. The best results can be obtained by combining
the two GCN modules, which significantly increases the av-
erage PSNR and SSIM by 6.93% and 2.55 %, respectively.

We also test the impact of kernel number and unit number.
Specifically, we test the kernel numbers K ∈ {36, 72, 108}
and basic unit numbers L ∈ {7, 11, 15}, and the PSNR re-
sults are shown in Table 4. It is clear that increasing kernels
and units can generate higher performance. Adding basic u-
nit results in larger modeling capacity, which has a greater
advantage over increasing the number of kernels. However,
increasing K and L eventually brings only limited improve-
ment at the cost of storage and computation. Thus, to bal-
ance the trade-o between performance and speed, we choose
K = 72 and L = 11 as our default setting.

Input FcGCN from the channel GCN module

Our result FsGCN from the spatial GCN module

Figure 7: Visualizations of the two GCN modules.

Visualization
We now visualize some feature maps to see what types of
representations the GCN modules have learned. Due to s-
pace limitation, for each GCN module, we only show three
representative features in the last basic unit. As shown in the
top row of Figure 7, since the channel GCN module is de-
signed to explore correlations across channels, the generated
features are able to highlight the animal’s body. This can be
seen as response to global content-related information. On
the other hand, as shown in the bottom row of Figure 7, the
features generated by the spatial GCN have large response
to dense and spatially coherent content, i.e., rain streaks and
animal’s contour. This visualization demonstrates that the t-
wo proposed GCN modules is able to extract task-specific
representations, which brings a significant improvement in
both subjective and objective de-raining performance.

Conclusion
We introduced a new network to explore the contextual re-
lationships for rain streak removal. We proposed two GCN
modules to capture context along the spatial and channel di-
mensions, respectively. These two modules are further com-
bined with a dilated convolutional module to form the basic
unit, which are used to extract rich feature representations.
The final de-raining network formed by the basic unit can
well preserve object structures while removing complex and
spatially long rain streaks.
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