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Abstract— We introduce a new deep detail network architec-
ture with grouped multiscale dilated convolutions to sharpen
images contain multiband spectral information. Specifically, our
end-to-end network directly fuses low-resolution multispectral
and panchromatic inputs to produce high-resolution multispec-
tral results, which is the same goal of the pansharpening in
remote sensing. The proposed network architecture is designed
by utilizing our domain knowledge and considering the two aims
of the pansharpening: spectral and spatial preservations. For
spectral preservation, the up-sampled multispectral images are
directly added to the output for lossless spectral information
propagation. For spatial preservation, we train the proposed net-
work in the high-frequency domain instead of the commonly used
image domain. Different from conventional network structures,
we remove pooling and batch normalization layers to preserve
spatial information and improve generalization to new satellites,
respectively. To effectively and efficiently obtain multiscale con-
textual features at a fine-grained level, we propose a grouped
multiscale dilated network structure to enlarge the receptive fields
for each network layer. This structure allows the network to cap-
ture multiscale representations without increasing the parameter
burden and network complexity. These representations are finally
utilized to reconstruct the residual images which contain spatial
details of PAN. Our trained network is able to generalize different
satellite images without the need for parameter tuning. Moreover,
our model is a general framework, which can be directly used
for other kinds of multiband spectral image sharpening, e.g.,
hyperspectral image sharpening. Experiments show that our
model performs favorably against compared methods in terms
of both qualitative and quantitative qualities.

Index Terms— Deep learning, hyperspectral image (HSI)
sharpening, image fusion, pansharpening, superresolution.

I. INTRODUCTION

IMAGES with multiband spectra have been widely used
for various applications, such as digital maps, agriculture,
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and mining. Compared with ordinary images with only
one or a few bands, images with multiband spectra usu-
ally contain multiple bands of objects captured by satel-
lites or sensors under different spectrums. However, due to
the physical constraints, satellites or sensors often generate
either a high-resolution (HR) single-band spectral panchro-
matic (PAN) image or several low-resolution multiband spec-
tral (LRMS) images. To fully take advantage of all avail-
able information, the pansharpening, which is a widely
concerned problem in multispectral image fusion, is usu-
ally adopted to simultaneously fuse the two components
to produce an HR multispectral (HRMS) image. Another
related application is the hyperspectral image (HSI) sharp-
ening, which can be treated as a number of pansharpen-
ing subproblems. Fig. 1 shows an example to demonstrate
the difference between the ordinary image superresolution
and multiband spectral image sharpening. The conventional
superresolution technology aims to map LR images to its
visually pleasing HR version with the same band (channel)
number. While the multiband spectral image sharpening is
designed to fuse two inputs with different band numbers and
generates a data cube, which contains the highest resolu-
tion in both spatial and spectral components. In this article,
we design our model by mainly exploring the pansharpening
problem.

Due to the powerful representation ability of deep convo-
lutional neural networks, many researchers have utilized this
technology for pansharpening. For example, pansharpening by
deep neural networks [1] assumes that the relationship between
HR/LR multispectral image patches is the same between the
corresponding HR/LR PAN image patches, and uses this
assumption to learn mapping relationships through neural
networks. Pansharpening by convolutional neural networks
(PNN) [2] modified the previous network architecture for
superresolution [3], and augments the input by introducing
nonlinear radiometric indices. However, the above-mentioned
two deep learning-based methods simply treat the pansharp-
ening as an image regression problem. While these meth-
ods achieve state-of-the-art results, they do not consider and
explore the specific goals of the pansharpening, i.e., spectral
and spatial preservations, but rather treat it as a black-box
learning process. It is clear that, for pansharpening, spatial and
spectral preservations are of crucial importance during fusion
and should be focused on when learning a function mapping.
This motivates us to propose a task-related approach based on
deep neural networks.
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Fig. 1. Examples of conventional image superresolution and multiband
spectral image sharpening. C × R and c × r represent the image size, B
and B1 represent the image band. (a) Image superresolution, c < C , r < R,
and B = 3. (b) Pansharpening, c < C , r < R, and 1 = B1 < B . (c) HSI
sharpening, c < C , r < R, and 1 < B1 < B .

In summary, our contributions are four-fold.
1) We incorporate our domain knowledge about multiband

spectral image sharpening into the data-driven deep
learning. Specifically, to preserve spectral information,
we directly map the up-sampled multispectral images to
the network output for a lossless propagation. To focus
on spatial structures in the PAN image, we train the
network in the high-frequency domain. We show that
adding spectra mapping and using high-pass inputs can
simplify the learning process.

2) We propose a new grouped multiscale dilated network
structure to capture multiscale representations at a fine-
grained level, which cannot be achieved by the widely
used pooling operation. Our grouped multiscale structure
is able to obtain larger receptive fields without increasing
the calculation and storage burden.

3) We remove the batch normalization (BN) operation to
improve generalization ability. We show that by doing
so, our model can better handle different types of
satellite images better than other deep learning-based
methods.

4) Our network is a general model that can be directly
used for multiband spectral image sharpening, e.g., pan-
sharpening and HSI sharpening. Experiments on the two
tasks show that our method is able to achieve state-of-
the-art performance on both quantitative and qualitative
qualities.

A preliminary version of this article called PanNet was
presented earlier [4]. This article adds to the initial version
in significant ways, and we summarize the changes in the
following. First, compared with PanNet that only uses standard

convolutions at a single scale, we add multiscale representation
potential to extract rich contextual information. To achieve
this goal, we propose a new grouped dilated block, which can
obtain larger receptive fields than PanNet without significantly
increasing the computational budget. Second, we argue that
removing the BN, which is a basic module in PanNet, can
further improve the generalization ability of the deep model
while ensuring its sharpening performance. Third, we extend
our model to HSI sharpening and provide more comprehensive
evaluations and analysis.

II. RELATED WORK

In recent decades, various pansharpening methods [5]–[8]
have been proposed. Among these, the most popular methods
are based on component substitution [9], including intensity
hue-saturation technique [10], principal component analy-
sis [11], and Brovey transform [12]. Though these methods are
efficient and succeed in approximating the spatial resolution of
the HRMS image, they tend to introduce spectral distortions.

More complex techniques have been proposed to address
this problem, such as adaptive approaches (e.g., partial
replacement adaptive component substitution (PRACS) [13])
and band-dependent approaches (e.g., band-dependent spatial-
detail (BDSD) [14]). Multiresolution analysis methods have
also been proposed [15]–[18]. In these approaches, the PAN
and LRMS images are decomposed by using multiresolution
tools, such as wavelets and Laplacian pyramids, and then
fused. However, due to the differences in high-frequency
regions, results generated by fusing these decomposed com-
ponents usually contain aliasing and local dissimilarities.

Other handcrafted methods model the relationships between
PAN, HRMS, and LRMS images by building regularized
objective functions. These methods treat the fusion process
as an image restoration optimization problem [19]–[24]. Since
the spatial information is stored in PAN image, P+XS assumes
that the spectral channels are contained in the topographic
map of its PAN image. In other words, it considers that the
PAN image is the linear combination of the HRMS image
directly. The result of the P+XS method is remarkable, except
it suffers from some blurry by penalizing large values [19]. In a
recent study, a large part of methods introduces a high-pass
filter to describe structural similarity while minimizing spectral
distortion. Since the bands’ range and pixel values of PAN
image and HRMS image for the same objective are different,
guided filter-based fusion [20], Bayesian nonparametric dictio-
nary learning [21] and a regularized model-based optimization
framework [22] consider the high-pass filtered components
between the PAN image and the HRMS image is a linear
relationship, and the error obey a Gaussian distribution. The
recent method pansharpening with a hyper-Laplacian penalty
(PHLP) [23] uses a hyper-Laplacian distribution to constrain
the error, which allows large deviation of value in structural
preservation to some degree. This penalty gives a significant
improvement. In [24] and [25], the method achieves both
satellite image registration and fusion (SIRF) in a unified
framework, which not only utilizes a high-pass filter to achieve
structural similarity but also incorporates the inherent corre-
lation of different bands. PHLP and SIRF methods achieve
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Fig. 2. Proposed deep network structure and multiscale convolutions for pansharpening. In each multiscale dilated block shown in Fig. 6, the input 64 feature
maps are first divided into 4 groups for subsequent dilated convolutions. The final output features are obtained by fusing all multiscale features through the
1 × 1 convolution.

better results compared with previous methods. These methods
can obtain excellent results, but also tend to depend on hand-
designed assumptions, requiring parameter tuning for different
satellites.

In the last few years, due to the powerful nonlinear
modeling ability, data-driven deep convolution neural net-
works (CNNs) achieved remarkable success on both high-level
vision tasks [26]–[30], [30] and low-level image processing
problems [31], [32], such as image denoising [33]–[35], HSI
sharpening [36], [37], superresolution [3], [38]–[40], com-
pression artifacts reduction [41] biomedical image segmen-
tation [42], and general image to image regression [43]. For
pansharpening, Huang et al. [1] and Masi et al. [2] also take
advantage of deep CNNs to tackle the fusion problem. How-
ever, as mentioned before, spectral and spatial preservations
for pansharpening are not well considered in this two methods.

III. PROPOSED MULTISCALE NETWORK

In general, the goal of pansharpening and HSI sharpen-
ing [44] is to utilize the HR component to sharpen the LR
component that contains more bands and spectral information.
Therefore, these two tasks can be unified into a single-
observation model. We denote the desired images as X con-
tains B bands with size of C × R. The imaging models for
the input images can be written as

P = XHp + Np (1)

M = HmX + Nm (2)

where X ∈ R
C R×B is the desired output, Np and Nm are the

noises contained in the components P and M, respectively.
Hp ∈ R

B×B1 is the response of the spectral sensor, and
Hm ∈ R

cr×C R is composed of a downsampling operator.
Therefore, P ∈ R

C R×B1 is the spatial component that contains
HR information with B1 bands (B1 < B), and M ∈ R

cr×B

is the spectral component that contains B bands with size
of c × r (c < C , r < R). To pansharpening, P is the
HR PAN image and M is the LR multispectral images.
To HSI sharpening, P is the HRMS images and M is the
LR HSI s. As shown in Fig. 1, it is clear that each band
of multispectral images in HSI sharpening plays the role of
a PAN image in pansharpening. The HSI sharpening can be

Fig. 3. Basic network structures we considered for pansharpening. From left
to right: ResNet [26], ResNet + spectra mapping, and PanNet [4].

seen as a number of pansharpening subproblems. Therefore,
in this article, we take the pansharpening problem as our main
example since it can be directly extended to HSI sharpening.

Fig. 2 shows the framework of our proposed deep learning
with multiscale dilated convolution to pansharpening. As can
be seen, this involves a skip connection between the LRMS
image and output for enforcing spectral similarity and employ-
ing proposed multiscale dilated blocks to train network para-
meters in the high-pass domain for modeling spatial content.
We first review common approaches to the pansharpening and
then discuss our model in the context of the two goals of
pansharpening, i.e., preserving spatial content of PAN image
and spectral information of LRMS images.

A. Background

We denote the output HRMS images as X and the bth band
image of X is Xb. For the input images, P and M denote the
PAN image and LRMS images, respectively. Most existing
methods treat pansharpening as an optimization problem,
which is often constructed from a Bayesian perspective by
maximizing the posterior P(X|P, M). In general, maximizing
the posterior can be transferred to minimize

L = λ1 J1(X, P) + λ2 J2(X, M) + λ3 J3(X) (3)

where J1(X, P), J2(X, M), and J3(X) correspond to the struc-
tural consistency, spectral consistency, and the prior knowledge
of X, respectively. λ1, λ2 and λ3 are regularization parameters.
The desirable solution is the one that minimizes all the three
terms. For example, the first variational method P+XS [19]
uses linear assumptions to model structural consistency J1(·)

f1(X, P) = �
B∑

b=1
ωbXb − P�2

F (4)
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Fig. 4. Example result of the three model structures considered in Fig. 3. Better spectral modeling is observed in (c) and (d), while (d) has some spatial
improvement over (c) in high-frequency details. (a) HRMS (ground truth). (b) ResNet [26]. (c) ResNet+spectra mapping. (d) PanNet [4]. (e) LRMS. (f) Residual
of (b). (g) Residual of (c). (h) Residual of (d).

where ω is a B-dimensional probability weight vector.
To focus on high-frequency parts, other methods utilize a
spatial difference operator to preserve details. In [23], a hyper-
Laplacian prior is further explored for structural penalty. For
J2(·), many methods define the spectral penalty as

f2(X, M) =
B∑

b=1
�k ⊗ Xb − U P(Mb)�2

F (5)

where ⊗ is the convolutional operation. U P(·) indicates the
upsampling operation to make Mb to be the same size as Xb,
which is smoothed by the convolutional kernel k [19], [20],
[22], [23]. While the most widely used penalization of J3(·)
is the TV regularization.

A straightforward strategy to utilize deep learning is to
directly learn a mapping function between the two inputs {P,
M} and output X. A simple and plain network architecture can
be directly leveraged to minimizes

L = � f (P, M; �) − X�2
F (6)

where f (·) represents a deep network and � denotes learnable
network parameters. For example, this strategy is used by
PNN [2], which inputs corresponding augmented training data
into a deep CNN. Although this basic network achievers good
results, it does not exploit characteristics of images used in
pansharpening to define the network inputs or structures.

B. Basic Network Structure

We use the CNN with the ResNet block [26] as our
network backbone. The deep CNN is able to capture rel-
evant image characteristics and modeling complex nonlin-
ear functions for regression tasks [26], [45]. Moreover,
convolutional filters can also explore the high correlation
across different multispectral image bands [24]. Therefore,
to utilize the powerful nonlinear ability of deep struc-
tures, we adopt the popular ResNet as our basic network

block. The overall architecture is expressed as

Y1 = σ(W1 ⊗ concat(PG, UP(MG)) + v1)

Y2l = σ(W2l ⊗ Y2l−1 + v2l)

Y2l+1 = σ(W2l+1 ⊗ Y2l + v2l+1) + Y2l−1 (7)

where G denotes the high-pass information, σ(·) is the non-
linear operation, W and v denote the weights and biases,
respectively. l = 1, . . . , (L − 2)/2, Yl represents the lth
layer output, ↑ represents the upsampling operation, PG , and
UP(MG) are directly concatenated and represented by the
function concat(·). The final prediction X̂ is

X̂ ≈ (WL ⊗ YL−1 + vL) + UP(M) (8)

where UP(M) represents the upsampled LRMS image.
We test three potential basic network structures of which

the structures are shown in Fig. 3. The third network, i.e.,
PanNet [4], achieves the best performance. The first structure
corresponds to directly applying plain ResNet to the pansharp-
ening problem. Based on this network structure, we propose a
novel model for pansharpening to preserve both spectral and
spatial information, which we discuss in the following.

1) Spectral Preservation: For spectral preservation,
we upsample M and use a skip connection to the deep
network

L = � f (P, M; �) + UP(M) − X�2
F. (9)

This term is inspired by the variational methods represented
by (5), and it enforces that X shares the spectral content of
M. However, different from variational methods that utilize a
smoothing kernel to convolve X, we allow the deep network to
automatically correct the HR differences. The second network
in Fig. 3 corresponds to (9), and we call this network as
“ResNet + spectra mapping.” For PanNet [4], we include this
spectra mapping and a modification of ResNet discussed next.

2) Structural Preservation: As discussed in Section III-A,
to enforce structural consistency, most variational methods
utilize the high-pass information contained in the PAN image.
These methods are able to generate clearer details than the
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Fig. 5. Sparsity of high-pass components. Note that we only show one band of LR and HR images for the sake of demonstration. Other bands show similar
phenomenons, i.e., high-pass components have the characteristics of sparsity during our experiments. (a) LR image. (b) PAN image. (c) HR image. (d) High
pass of (a). (e) High pass of (b). (f) Residual (c)–(a). (g) Histogram of (a)–(c). (h) Histogram of (d)–(f).

P+XS approach, in which the image is directly used in (4).
Based on this motivation, we use the high-pass content of the
PAN image and of the upsampled LRMS images as the inputs
of network. The modified model is

L = � f (PG, UP(MG); �) + UP(M) − X�2
F. (10)

To obtain the high-pass information, we subtract from the
original images the low-pass content found by using the aver-
age filtering method. After obtaining the high-pass content,
we upsample to the size of the PAN for LRMS images. Note
that since UP(M) is the low-pass part, the term (UP(M)− X)
contains the high-pass component of X. This frees the deep
network to learn a mapping function that fuses the high-pass
spatial information contained in PAN into X. To make the
network focus on processing high-pass information, we feed
the high pass of UP(M), i.e., UP(MG), into the network.

In Fig. 4, we compare the networks shown in Fig. 3.
Fig. 4(b) corresponds to the objective (6), Fig. 4(c) only
considers the spectra mapping in (9), and Fig. 4(d) corresponds
to (10). It is clear that spectra mapping focuses on spectral
consistency and training on the high-frequency domain can
well preserve edges and details.

C. Domain-Specific Knowledge for Learning Process

In this section, we qualitatively analyze how our domain-
specific knowledge-based network design simplifies the learn-
ing process. As shown in Fig. 5, after adding spectra mapping
and using high-pass inputs, the mapping process is actually
between three sparse components, i.e., Fig. 5(d)–(f). In other
words, most pixels equal to or close to 0, as shown in
the histogram in Fig. 5(h). This indicates that the numbers
of unknowns are significantly decreased, which makes the
learning process easier to tackle.

Utilizing the sparsity is also widely used in existing pan-
sharpening methods [20], [23]–[25]. Thus, based on our

domain-specific knowledge, we introduce spectra mapping
and high-pass inputs to train network parameters. As shown
in Fig. 16, compared with ResNet and ResNet + spectral
mapping, PanNet [4] has lower training and testing errors with
the same network depth and training data, which demonstrates
our design can simplify the learning process.

D. Grouped Multiscale Network Structure

Different from high-level vision problems, the pansharpen-
ing is an image fusion problem, which requires accurate dense
pixel prediction. Thus, introducing the pooling operation,
which is widely used to obtain abstract features, leads to
spatial information loss that cannot be recovered. However,
removing the pooling operation slows the increasing rate of the
receptive field. On the other hand, many multiscale networks,
e.g., U-Nets [42] and RBDN [43], in which features at lower
scales, reuse the computation of features a higher scales
using cleverly designed skip connections. However, these
methods extract multiscale features in a layerwise fashion.
The multiscale representation ability at a more granular scale
is limited. Since we use the high-pass components as inputs,
only fine details and edges are fed into the network. Therefore,
to achieve the balance between spatial high-pass information
preservation and receptive field enlargement, we propose a
grouped multiscale dilated block to extract multiscale repre-
sentations at a fine-grained level.

By weighting pixels with a step size of a dilated factor,
the dilated convolution [46] can effectively increase the recep-
tive field without losing spatial information and increasing
parameter burdens. With different dilated factors, one fixed
convolutional kernel is able to achieve various receptive fields,
which inspire us to design a multiscale dilated block to fully
utilize spatial information at different scales. However, directly
increasing dilated factors require more computational budget.
Therefore, we divide the feature maps into small groups

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 12,2021 at 05:08:18 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: DEEP MULTISCALE DETAIL NETWORKS FOR MULTIBAND SPECTRAL IMAGE SHARPENING 2095

Fig. 6. Insights of ResNet block and our multiscale dilated block. d indicates
the current dth layer. BN and ReLU indicate BN and rectifier linear unit,
respectively.

and perform different dilated convolutions for each group
separately.

Fig. 6 shows the insight of ResNet block and our grouped
multiscale dilated block. The convolution operation in the
ResNet block can be seen as a dilated convolution with a
dilated factor equals to 1. Our grouped multiscale dilated
block is consisted of two multiscale dilated operations and
one 1 × 1 convolution. Each block contains four parallel
dilated convolutions with different dilated factors. These four
paths are concatenated and fused by one 1 × 1 convolution
layer, which introduce negligible computational complexity,
to generate the output feature maps. Note that the four paths
are individually processed and not fully connected, which
saves both computational and storage burdens. The multiscale
representation ability of our grouped block is orthogonal to
existing methods [42], [43] that utilizes features with different
resolutions at different network layers. The multiscale of our
model refers to the multiple receptive fields at a single network
layer. Our whole network contains four grouped multiscale
dilated blocks and two 3 × 3 convolution layers, as shown
in Fig. 2. The first 3 × 3 convolution layer is used to
extract basic image features while the last one is used for
reconstructing the residual images.

E. Removing Batch Normalization

As one of the most effective way to alleviate the internal
covariate shift, BN [47] is widely adopted before the nonlin-
earity in each layer in existing deep learning based methods.
The operation of BN contains two parts: first, the feature maps
x within a mini-batch are normalized by

x̂ = x − μx

σx
(11)

where μx and σx are the mean and standard deviation of x
within the mini batch. Then, the x̂ is scaled and shifted by

y = γ x̂ + β (12)

where y is the output feature maps, γ and β are learnable
parameters and used to increase the representation ability.

The BN has several merits, such as fast training and low
sensitivity to initialization. However, during our experiments,
we found that BN does not always perform well when testing
other satellite data. This is because BN assumes that the dis-
tributions of training and testing data are the same. In the test
phase, the mean μx and the standard deviation σx used in (11)
are calculated and saved based on the training data. However,
for the remote sensing community, different satellites have
their own data types. The μx and σx obtained on one satellite
data are not always consistent with other satellites. Therefore,
when testing new satellite data, the parameters learned from
different satellites may cause distribution fluctuations and
affect subsequent calculations. Note that, as described in
PanNet, since the main energy in the image, i.e., the low-
pass components, has been removed, training the network
using high-pass details can reduce the distribution difference
to some extent. However, continuous use of (11) and (12) will
lead to the accumulation of fluctuations, which will increase
the distribution difference again. Therefore, we argue that by
combining with our high-pass details training, removing BN
can further improve the generalization ability of deep networks
for different satellites. This has practical value in the case
of new satellites and sensors that cannot provide sufficient
training data.

In addition, introducing spectra mapping and high-
pass details can effectively simplify the learning process,
as described in Section III-C. This implies that we do not need
BN to accelerate training since the problem already becomes
easy to handle. Moreover, removing BN can sufficiently reduce
memory usage since the BN layers consume the same amount
of memory as the preceding convolutional layers. Based on
the above-mentioned observation and analysis, we remove
BN layers from our network to improve generalization to
new satellites and reduce parameter numbers and computing
resources.

IV. EXPERIMENTS

We conduct the experiments by using the Worldview3 satel-
lite images. Since the HRMS images are not available in
the data set, we follow Wald’s protocol [48] for all exper-
iments. The Wald protocol downsamples both the LRMS
and PAN images so that the original LRMS images can
be used as the ground truth images. Before downsampling,
a low-pass filter is applied to reduce aliasing. To match
the sensor properties, we follow the method [18] and use
an approximation of the sensor modulation transfer function.
Specifically, we use a 7 × 7 Gaussian kernel with a standard
deviation of 0.1 to convolve all original images followed by
downsampling with a factor of 4. We compare with several
nondeep learning-based pansharpening methods: “à trous”
wavelet transform (ATWT)-M3 [17], additive wavelet lumi-
nance proportional (AWLP) [16], BDSD [14], PRACS [13],
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Fig. 7. Visual comparisons on the simulated data. As shown in the red rectangles, our method can simultaneously achieve both spatial and spectral preservation,
e.g., there are fewer blurry artifacts near the track’s edge, and it is closer to the color of the ground truth. Please zoomed-in view for a better visualization.
(a) LRMS. (b) PAN. (c) Ground truth. (d) ATWT-M3. (e) AWLP. (f) BDSD. (g) PRACS. (h) Indusion. (i) PHLP. (j) SIRF. (k) PNN. (l) U-Nets. (m) RBDN.
(n) ResNet. (o) ResNet + spec. (p) PanNet. (q) Our.

Indusion [15], PHLP [23], and SIRF [24], [25]. We compare
with three state-of-the-art deep learning-based methods: one
relative shallow network PNN [2] and two multiscale networks
U-Nets [42] and RBDN [43]. We also compare with the other
three network structures of Fig. 3, i.e., ResNet [26], ResNet
+ spectra mapping and PanNet [4].

To train our network, we totally extract 18K
PAN/LRMS/HRMS patch pairs, and each patch size is
set as 64 × 64. During the training process, 90% of the
pairs are used to learn the network, and the rest is used for
testing. We use the Caffe [49] to train our models and select
ReLU [50] as the nonlinearity σ(·). The number of filters is
set as 16 for all layers. We use the SGD algorithm, in which
the weight decay and momentum are set as 10−7 and 0.9,
to minimize the objective function (10). The learning rate is
initialized as 0.001 and divided by 10 after 105 and 2 × 105

iterations. The training is finished at 2.5 × 105 iterations.
The mini-batch size is 16, and the radius of the low-pass
filter is 5.

A. Simulated Experimental Results

We first test our model on 225 images, which contain 8
spectral bands, from the Worldview3 satellite by using the
experimental framework described earlier. Note that we only
display the three color bands for visualization, while all spec-
tral bands are used to perform quantitative evaluations. Five
widely used quantitative metrics are utilized to evaluate per-
formance, i.e., relative dimensionless global error in synthesis
(ERGAS) [51], spectral angle mapper (SAM) [52], universal
image quality index [53] averaged over the bands (QAVE) and
X-band extension of Q8 (for 8 bands) [54], and the spatial
correlation coefficient (SCC) [55].

The mean and standard deviation of quantitative scores are
shown in Table I. It can be seen that if not considering the net-
works of Fig. 3 and our multiscale network, the PNN method
performs the best. While PanNet [4] significantly improves
the results over PNN [2]. This is due to the additional design
of spectra-mapping and high-frequency inputs. Furthermore,
our multiscale network achieves the best performance over
all other methods, which indicates that using a multiscale
fashion can further improve the reconstruction accuracy. This
is because more contextual information is utilized for the
subsequent reconstruction.

In Fig. 7, we show an example at the reduced scale.
As shown in the red rectangles, other compared methods have
obvious blurring and artifacts in their results and some spectral
distortions (here showing as color distortion). In Fig. 8,
we show the residuals of these images to highlight the differ-
ences. As can be seen, the color of the residual image of our
multiscale network tends to gray, which means good spectra
preservation. Meanwhile, our residual image also shows less
detail and texture than other methods, which means the best
spatial preservation is achieved by our model.

In Table II, we show the comparison on trainable parameter
numbers of deep learning-based methods. As can be seen, our
network has a comparable parameter number with PanNet [4]
and much less than other methods, while achieves the best
pansharpening performance, as shown in Table I.

B. Evaluation at the Original Scale

We also evaluate the results of the different methods at the
original resolution of the WorldView3 satellite on 200 test
images. One example of the results is shown in Fig. 9. Since
we are lack of the ground truth HRMS images, the residuals
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Fig. 8. Residuals between the HRMS image reconstructions and the ground truth from Fig. 7. (a) ATWT-M3. (b) AWLP. (c) BDSD. (d) PRACS. (e) Indusion.
(f) PHLP. (g) SIRF. (h) PNN. (i) U-Nets. (j) RBDN. (k) ResNet. (l) ResNet + spec. (m) PanNet. (n) Our.

TABLE I

QUALITY METRICS OF DIFFERENT METHODS ON 225 SATELLITE IMAGES WORLDVIEW3. THE BEST AND THE

SECOND BEST RESULTS ARE BOLDFACED AND UNDERLINED, RESPECTIVELY

Fig. 9. Visual comparisons on the original scale data. As shown in the red rectangles, our model can produce sharper results compared with other methods,
with fewer artifacts on the white roof. Please zoomed-in view for a better visualization. (a) LRMS. (b) PAN. (c) ATWT-M3. (d) AWLP. (e) BDSD. (f) PRACS.
(g) Indusion. (h) PHLP. (i) SIRF. (j) PNN. (k) U-Nets. (l) RBDN. (m) ResNet. (n) ResNet + spec. (o) PanNet. (p) Our.

to the upsampled LRMS images are shown in Fig. 10. Since
the output and upsampled LRMS images should have close
spectral information, smooth regions should be close to zero,
and only edges or structures should show, corresponding to
information missing from the LRMS images.

We also adopt the strategy used in [25] to perform quantita-
tive evaluations, i.e., we downsample the output HRMS images
and compare them with the LRMS as ground truth. We also use
QNR [56], which is composed of spectral distortion index Dλ

and spatial distortion index Ds , as the reference-free measure.
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Fig. 10. Residuals between the HRMS image reconstructions and the upsampled LRMS image from Fig. 9. Our network focuses on reconstructing the
high-frequency structure missing from LRMS. (a) ATWT-M3. (b) AWLP. (c) BDSD. (d) PRACS. (e) Indusion. (f) PHLP. (g) SIRF. (h) PNN. (i) U-Nets.
(j) RBDN. (k) ResNet. (l) ResNet + spec. (m) PanNet (n) Our.

TABLE II

COMPARISON ON PARAMETER NUMBERS OF
DEEP LEARNING-BASED METHODS

TABLE III

QUALITY METRICS OF DIFFERENT METHODS ON 200 SATELLITE IMAGES

FROM WORLDVIEW3. THE BEST AND THE SECOND BEST RESULTS
ARE BOLDFACED AND UNDERLINED, RESPECTIVELY

These results are shown in Table III, where we can see the
promising performance of our model again.

C. Generalization to New Satellites

We have motivated our multiscale network as being more
robust to differences across satellites. To show this, we com-
pare our model with PNN on both the WorldView2 and
WorldView3 satellite data sets. Specifically, two PNN-trained
models are tested: one called PNN-WV2, which trained on
WorldView2 data; the other called PNN-WV3 is trained on
the same WorldView3 data set as our multiscale network.

We show one visual result in Fig. 11. We can see that
PNN does not generalize well to new satellites, while our
multiscale network can generalize well to WorldView2 being
trained on WorldView3. In Fig. 11(d) and (e), PNN (-WV2 and
-WV3, respectively) suffers from obvious spectral distortion,
which our network is robust to new types of data. This affirms

Fig. 11. Network generalization ability that tests on WorldView2 [(e) and
(f) are trained on WorldView3]. (a) LRMS. (b) PAN. (c) Ground Truth.
(d) PNN-WV2 [2]. (e) PNN-WV3. (f) Our. (g) |(c) − (d) |. (h) |(c) − (e) |.
(i) |(c) − ( f ) |.

the ability of our model to leave modeling the spectral
information to the spectra-mapping procedure and to allow the
network to focus on structural information. On the other hand,
PNN requires its network to model both spatial and spectral
information.

We also considered how our model and PNN generalize
to the IKONOS satellite data. Since IKONOS data contain
four bands, the R, G, B, and infrared, bands from World-
View3 data are selected to train our model. PNN-IK and PNN-
WV3 indicate two models that PNN trained on IKONOS data
and WorldView3 data, respectively. As shown in Fig. 12, PNN-
WV3 has a clear structure at the cost of spectral distortion.
Though PNN-IK is directly trained on IKONOS, our method
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TABLE IV

QUANTITATIVE COMPARISONS FOR DIFFERENT DILATED FACTORS (DF ) ON 225 SATELLITE IMAGES WORLDVIEW3

Fig. 12. Network generalization ability that tests on IKONOS
[(c) and (d) are trained on WorldView3]. (a) LRMS. (b) PNN-IK [2]. (c) PNN-
WV3. (d) Our. (e) |(a) − (b) |. (f) |(a) − (c) |. (g) |(a) − (d) |.

still has clearer results. As can be seen in the second row
of Fig. 12, i.e., the residual images, our method is able
to simultaneously achieve spectral and spatial preservations.
Specifically, compared with PNN, our result contains the less
color difference in smooth regions and more clear structures
around boundary regions. We see that using high-frequency
parts to train our network can remove inconsistencies between
different satellites.

D. Ablation Study

We provide ablation studies to explore the effect of each
part of our model.

1) Effect of Grouped Dilated Blocks: Since introducing the
grouped multiscale dilated blocks is the core of this article,
we first test the effect of different dilated blocks by compar-
ing it to the baseline network, which only contains normal
convolutions, i.e., the dilated factor fixed as 1. Specifically,
we test five different grouped dilated blocks by increasing the
dilated factors from 2 to 5. In other words, the feature maps
are divided into corresponding numbers of groups. Note that
for a fair comparison, we have adjusted different dilated blocks
to make them have close parameter numbers.

Quantitative results are shown in Table IV, and increasing
dilated factors can generate better results. Adding dilated
factors result in larger receptive fields, which have a greater
advantage over the normal convolution. However, adding
dilated factors eventually increase memory burdens and bring
only limited improvement. Thus, to balance the tradeoff
between performance and speed, we choose the maximum
dilated factor equal to 4 as our default setting.

Fig. 13. Parameter numbers and runtime comparisons between ResNet block
and our grouped dilated block. Note that the runtime is in milliseconds. Two
different tensor sizes, i.e., 512 × 512 × 64 and 1024 × 1024 × 64, are used
for testing.

We also test the computational efficiency of the ResNet
block and our grouped dilated block, i.e., the two network
architectures, as shown in Fig. 6. As well known, under the
convolutional neural network framework, the convolutional
operations occupy the main running time. Due to the increase
in the size of the convolutional kernel, directly adding dilated
factors usually increases the running time. However, since
we divide the feature map into four parallel groups, both the
number of convolution kernels and the number of connections
between adjacent features are reduced to a quarter of the
original numbers. This gives our grouped dilated blocks more
powerful multiscale representation abilities while maintain-
ing similar computational efficiency as ResNet. As shown
in Fig. 13, the parameter number of our block is reduced due
to the grouping operation, while the computational runtime (in
milliseconds) of each block is close after GPU acceleration.

To see which representations these modules have learned,
we visualize some of the feature maps from different
dilated convolutions in Fig. 14. Clearly, as the dilation fac-
tor increases, the corresponding feature maps contain larger
scale structures and content, which is consistent with our
intention to capture multiscale spatial patterns. Therefore,
unlike the existing methods [42], [43] that perform mul-
tiscale representation in a layerwise manner, our grouped
dilated block can extract multiscale features at a fine-grained
level and increases receptive fields within one single-network
layer. This brings a significant improvement in sharpening
performance.

2) Effect of Removing BN: To demonstrate the effectiveness
of removing BN as described in Section III-E, we conduct
experiments by plugging BN into our deep model. The
BN operation is deployed after each convolutional opera-
tion, which is the same as Fig. 6(a). We train the deep
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Fig. 14. Examples of dilated convolutions. We only show four feature maps for each dilation factor for visualization. (a) DF = 1. (b) DF = 2. (c) DF = 3.
(d) DF = 4.

TABLE V

QUANTITATIVE RESULTS OF REMOVING BN

model with BN on the Worldview3 data and test it on both
Worldview3 and Worldview2 data at the original scale. The
qualitative results are shown in Table V. It can be seen that
on the testing data of Worldview3, the overall performances of
the two models are very close. This is because both training
data and testing data are collected from the same satellite,
which meets the assumption of BN. While on the testing data
of Worldview2, the performance of the model with BN is
significantly reduced. This is because the distribution forms
of the data collected by the two satellites are different. The
distribution form learned by BN, i.e., the mean and standard
deviation in (11), on one type of satellite cannot be directly
used for another type of satellite.

To prove this viewpoint, in Fig. 15, we show an example
of statistical histogram distributions of feature maps at the
first layer. The parameters in (11) and (12) are learned
from Worldview3 data. It is clear that in Fig. 15(a), if the
training data and testing data have the same distribution form,
i.e., both from Worldview3, the feature maps generated after
the BN operation change in a relatively small range. On the
contrary, using the learned parameters from Worldview3 to
process Worldview2 data leads to an obvious change, as shown
in Fig. 15(b). This may lead to subsequent calculations to
be unstable, which degrades the performance. In addition,
adding BN operations consumes more computing and storage
resources. Therefore, we argue that adopting BN is not suitable
for this specific remote sensing community. To improve the
generalization ability and save the computing and storage
budget, we remove BN from our model.

3) Effect of Hyperparameter Settings: We also tested
the impact of kernel number and grouped dilated block
number. Specifically, we first test the kernel numbers
K ∈ {16, 32, 48, 64} while fixing the grouped dilated block
number as 4. Then, we test the grouped dilated block numbers
L ∈ {1, 2, 4, 6} while fixing the kernel number as 64. Quanti-
tative results are shown in Table VI. It is clear that increasing

Fig. 15. Statistical histogram distributions of feature maps using BN. The
parameters in (11) and (12) are learned from Worldview3 data and directly
used on Worldview2 data. (a) Trained on Worldview3, tested on Worldview3.
(b) Trained on Worldview3, tested on Worldview2.

kernels and blocks can generate higher performance. Adding
grouped blocks results in larger modeling capacity and more
nonlinear operations, which have a greater advantage over
increasing the kernel numbers. However, increasing K and
L eventually brings only limited improvement at the cost
of storage and computation. We also adjust the PanNet to
make its parameter numbers close to our proposed multiscale
model. The quantitative results are shown in Table VII. It is
clear that under different orders of magnitude, our proposed
method consistently outperforms the PanNet, which further
demonstrates the effectiveness of our model. To balance the
tradeoff between performance and speed, we choose K = 64
and L = 4 as our default setting.

E. Convergence

We show the convergence on the training and testing
data sets as a function of SGD iteration in Fig. 16.
We focus on the four different network structures: ResNet,
ResNet+spectramapping, PanNet, and our multiscale network.
As can be seen in Fig. 16, our network has a significantly
lower training and testing error than other network structures.
This demonstrates that our multiscale network structure and
high-pass training strategy are suitable for the specific pan-
sharpening problem.

F. Hyperspectral Image Sharpening

Our proposed network can be directly extended to other
applications. In this section, we test our model on HSI
sharpening [62], which has attracted more and more attention
in earth remote sensing tasks [63], e.g., object classification
[64]–[66] and change detection [36]. This task aims to fuse
an LR HSI (HSI) with an HR multispectral image to obtain
an HR-HSI. We adopt the fusion framework reported in
method [36] to evaluate our model. We have compared our
network with four state-of-the-art methods, i.e., HYperspectral
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TABLE VI

QUANTITATIVE COMPARISONS ON DIFFERENT NUMBERS OF KERNEL (K ) AND BLOCK (L ) ON 225 SATELLITE IMAGES WORLDVIEW3

TABLE VII

QUANTITATIVE COMPARISONS WITH PANNET UNDER DIFFERENT PARAMETER NUMBERS ON 225 SATELLITE IMAGES WORLDVIEW3

Fig. 16. Convergence of different network structures. (a) Training error
curves. (b) Testing error curves.

image super-resolution via SUbspace-based REgularization
(HYSURE) [59], coupled spectral unmixing (CSU) [60],
nonnegative-structured sparse representation (NSSR) [61] and
deep hyperspectral image sharpening (DHSIS) [36]. Table VIII
shows the quantitative results on two public data sets,
i.e., CAVE data set [57] and Harvard data set [58]. As can
be seen, our model has the best overall performance on the
four metrics. This is because we adopt domain knowledge to,
respectively, preserve spectral and spatial information, which
is also the key role of HSI sharpening. This demonstrates that
our multiscale network is a general model for different tasks.

In Fig. 17, we show the sharpening results from each data
set for visual comparison. As shown in the red rectangles in
output, the HR-HSIs, HYSURE, CSU, and NSSR methods
have obvious spectral artifacts, while DHSIS has noticeable
edge distortion. On the contrary, our model can simultaneously
achieve spectral and spatial preservations. We also show the
corresponding residual images using pseudocolors to reflect
the differences between predicted HR-HSIs and ground truths.
As shown in residual images, other compared methods contain
various degradations, such as blurry details and ringing arti-
facts, especially in the marked regions. Our proposed deep
multiscale detail network achieves the best performance in
detail reconstruction and artifacts reduction. At the same time,
our residual image is displayed in dark blue on the overall

smooth area; that is, all difference values are close to 0.
While other residual images more or less contain noticeable
regions, indicating relatively large errors. This indicates that
our method achieves better spectral preservation.

G. Discussion

Our approach belongs to data-driven methods and directly
learns the relationship between inputs and desirable high-
quality outputs. The physical models reflecting the satellite
characterizes, and imaging processes are ignored. However,
our deep model can be combined with handcrafted algorithms
to take full advantage of both methods. For example, our
network can be used as the regularization term, i.e., J3(·)
in (3), to implicitly express the complex prior from training
data. In this way, both powerful representation ability of deep
networks and prior physical models can be jointly exploited,
which may further boost the performance. We leave this to
our future work.

Our approach also belongs to supervised methods and
predicts pixel values based on synthetic training data. On the
other hand, the generative adversarial networks [67] are able
to capture data distribution forms in an unsupervised manner.
As described in the method [68], using adversarial learning
generates realistic but not real results. We test the GANs’ effect
and show one visual result in Fig. 18. It is clear that using
adversarial loss can generate sharper results with fake details,
as shown in the enlarged regions. For the remote sensing com-
munity, accuracy is more important than perceptual qualities.
Therefore, we do not introduce GANs to our method.

In method [69], the residual and high-frequency details are
also applied to the image deraining. However, our method
differs from this method in two ways. First, the purpose
of these two tasks is different. The image deraining is a
one-to-one mapping process in which the spatial resolution
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TABLE VIII

QUANTITATIVE RESULTS ON CAVE [57] AND HARVARD [58] DATA SETS

Fig. 17. One example (CAVE data set [57]) of HSI sharpening at the last band. All images and absolute residuals are normalized for a better visualization.
(a) Ground truth. (b) HYSURE [59]. (c) CSU [60]. (d) NSSR [61]. (e) DHSIS [36]. (f) Our. (g) Residual | (a)−(b) |. (h) Residual | (a)−(c) |. (i) Residual |
(a)−(d) |. (j) Residual | (a)−(e) |. (k) Residual | (a)−(f) |.

Fig. 18. Visual results of introducing GANs. The second row shows the
enlarged areas in the first row. Using GANs generates sharper results with
fake details. (a) Ground truth. (b) With GANs. (c) Without GANs.

and number of bands remain unchanged. This task aims to
reconstruct a high-quality image from its low-quality observa-
tion, while the multiband spectral image sharpening is a fusion
process. It receives two inputs with different spatial resolutions
and band numbers and aims to output a high-quality image
that contains all valuable spatial and spectral information.
Second, in addition to simplifying the learning process, the two
approaches have different motivations for applying residual
and high-frequency details. For the image deraining, both rain
streaks and objects details belong to high-frequency parts.
Using residual and high-frequency details helps the network
effectively extract rain streaks patterns. For the multiband

spectral image sharpening, using residual and high-frequency
details aims to achieve the fusion and preservation of spatial
information, which is one of the goals of this task.

V. CONCLUSION

In this article, we propose a deep CNN-based approach
to sharpen multiband spectral images by combining deep
learning technology with domain-specific knowledge. Based
on the analysis of the pansharpening problem, we designed
our network by taking into consideration the two goals—
spectral and spatial preservations. To preserve spectral infor-
mation, we introduce a concept of spectra mapping that
directly adds upsampled LRMS images to the squared objec-
tive term to allow the network to focus on high-frequency
parts. To preserve spatial information, by using a multiscale
fashion with dilated convolutions, we train our network on
the high-frequency components of the PAN and upsampled
LRMS images. This multiscale structure allows us to fuse
spatial information at different scales to further improve the
reconstruction accuracy. Compared with the state-of-the-art
methods, our method achieves better image fusion and gen-
eralization to new satellites. We also test our model on the
HSI sharpening to show the potential value of our network
for different tasks.
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