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Rain O’er Me: Synthesizing Real Rain to Derain
With Data Distillation
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Abstract— We present a weakly-supervised technique for learn-
ing to remove rain from images without using synthetic rain
software. The method is based on a two-stage data distillation
approach, which requires only some unpaired rainy and clean
images to generate supervision. First, a rainy image is paired
with a coarsely derained version using on a simple filtering
technique (“rain-to-clean”). Then a clean image is randomly
matched with the rainy soft-labeled pair. Through a shared deep
neural network, the rain that is removed from the first image is
then added to the clean image to generate a second pair (“clean-
to-rain”). The neural network simultaneously learns to map both
images such that high resolution structure in the clean images
can inform the deraining of the rainy images. Demonstrations
show that this approach can address those visual characteristics
of rain not easily synthesized by software in the usual way.

Index Terms— Image deraining, deep learning, unpaired data,
image filter.

I. INTRODUCTION

OUTDOOR vision systems, such as road surveillance,
can be negatively impacted by rainy weather conditions

[1]–[3]. Many fully-supervised convolution neural networks
have been proposed to address this rain removal problem
at the single-image level [4]–[8]. These methods use large
number of image pairs with and without rain for training, for
software is used to synthesize rain in a clean image. While
performance is often good, generalization can be poor when
the appearance and style of synthetic rain is different from the
real rain. In Figure 2 below, we see that synthetic rain tends
to be more homogeneous in shape, brightness and direction,
while the distribution of real rain is much more irregular. The
result is that a model trained with synthetic rain has difficulty
in many realistic scenarios. Instead, adding real synthetic rain
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Fig. 1. (a) Real rainy image. (b) rain map R̂e corresponding to (a) generated
by our method. (c) real clean image C . (d) rainy image pair generated for
training, D = C + R̂e .

to a clean image as in Figure 1, a model can more easily
learn to recognize and remove the realistic looking object.

At present, the major problem of single image rain removal
is improving generalization performance. The ideal solution
is to train the networks with only real-world images. Unfor-
tunately, collecting clean/rainy versions of the exact same
image is effectively impossible. Another approach is to treat
rain removal as an unsupervised learning problem. Some
unsupervised methods, such as CycleGAN [9] and DualGAN
[10], usually use unpaired data to learn the cross-domain
image translation. We note that collecting unpaired rainy and
clean images is relatively easy. However, rain streaks are fairly
sparse in the rainy image, these unsupervised methods tend to
focus on high energy content in the absence of supervised
constraints, thus failing at this problem.

To address the above problems, we focus on combining
information from unpaired real rainy and clean images to
mutually aid the deraining process. This is based on a
two-stage data distillation method that attempts to perform
deraining of both real rainy images and clean images to which
the rain extracted from the rainy images has been added.
Like previous knowledge distillation methods [11]–[13],
our method also creates soft and hard objectives to train
this single network. However, our method does not require
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Fig. 2. Visual comparisons of real rainy images and synthesized rainy images.
(a)-(d): real rainy images from Internet and their corresponding rain maps
generated by our deraining network. (e)-(h): synthesized rainy images and
their corresponding rain maps obtained by subtracting ground-truth.

a strong pre-trained teacher network or a large amount of
paired data.

Instead, we observe that rain is a form of sparse noise that
can be suppressed using general image transformation tech-
niques such as filtering (Gaussian filtering, median filtering,
etc.). Therefore, it is easy to remove rain from an image with
these basic techniques, but unfortunately much informative
image content is removed as well due to over-smoothing.
In this paper, we first use an image filter to create soft (rain-
free but blurred) labels to guide the deraining process. Then,
we view a deraining model as a data distillator, which can
distill the noise information (i.e., rain streaks) from the input
rainy image to help generate new rainy-clean image pairs by
adding the removed rain to a random clean image. By training
a neural network on both the “soft label” (rain-to-clean) and
“hard label” (clean-to-rain) images, we can simultaneously
learn to preserve high resolution detail from the latter, while
learning to detect and remove realistic looking rain from
the former. Through experiments on several synthetic and
real-world datasets, we demonstrate the effectiveness of the
proposed two-stage data distillation method. In particular, our
method performs well in nearly any real rainy scenario, while
the robustness of other state-of-the-art deraining methods to
non-uniform rain is often more disappointing.

The contributions of our paper are summarized as follows.

• We propose a new two-stage data distillation method for
single image rain removal. To the best of our knowledge,
this is the first method for training deraining networks
using unpaired rainy and clean images.

• We construct soft and hard objectives using the content
extracted from unpaired rainy and clean images. Guided
by these objectives, the deraining network will restore the
input rainy images to rain-free and high-quality images.

• Based on the two-stage data distillation method, we can
train a model with unpaired real rainy and clean images.
In this way, the deraining network is forced to learn
the mapping function between real-world data, instead

of synthetic data. Thus, our model can generalize well to
other real-world images.

II. RELATED WORK

1) Single Image Rain Removal: Single image deraining
is a challenging and ill-posed task. Traditional methods
are designed by using handcrafted image features to
describe physical characteristics of rain streaks, or exploring
prior knowledge to make the problem easier. For example,
Kang et al. [14] attempt to separate rain streaks from the high
frequency layer by sparse coding. Chen and Hsu [15] utilize
a low-rank appearance model to capture the spatio-temporally
correlated rain streaks. Kim et al. [16] apply a nonlocal
mean filter to recover the rain streak regions. Luo et al. [17]
propose a rain removal framework based on discriminative
sparse coding. Li et al. [18] exploit Gaussian mixture models
to separate the rain streaks. Wang et al. [19] combine image
decomposition and dictionary learning to remove rain or snow
from images. Zhu et al. [20] use three image priors to assist
the deraining process. A limitation of many of these methods
is that they tend to over-smooth the resulting image [18], [21].

Recently, deep learning has sped up the progress of single
image deraining. Fu et al. [22] utilize domain knowledge and
train a ResNet on high frequency parts to simplify the learning
processing. Zhang et al. [23] adopt a generative adversarial
network (GAN) to synthesize the derained image from a
given input rainy image. To adaptively utilize the rain-density
information, Zhang and Patel [6] further present a density-
aware multi-stream densely connected convolutional neural
network (DID-MDN) to perform the image deraining process.
Yang et al. [24] construct a recurrent dilated network, which
jointly learns three targets: rain streaks appearance, rain streaks
location and derained image. To mitigate the problem of rain
streak accumulation, Li et al. [25] develop a 2-stage CNN
to remove rain streaks and rain accumulation simultaneously.
Ren et al. [26] adopt a progressive ResNet to remove rain
streaks progressively at different stages. Li et al. [7] combine
recurrent neural networks with squeeze-and-excitation blocks
[27] for rain removal. To make the trained network have
better generalization ability, Wei et al. [28] introduce a semi-
supervised transfer learning method for unseen rain types.
Yasarla and Patel [29] propose an uncertainty-guided multi-
scale residual learning network to learn the rain content at
different scales and use them to estimate the final derained
output. These methods learn a mapping between synthesized
rainy images and their corresponding ground truths. A major
drawback, however, is that this can lead to poor generalization
ability to real rainy images that are not easily synthesized for
training.

2) Knowledge Distillation: Knowledge distillation has been
explored to transfer knowledge between varying-capacity
networks for supervised modeling [11], [12], [30]–[32].
Hinton et al. [11] use the output of a large pre-trained
network to aid the training of a smaller student network.
Radosavovic et al. [13] propose data distillation, which
ensembles a model run on different transformations of an
unlabeled input image to improve the performance of the
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Fig. 3. The framework of our two-stage data distillation for singal image rain removal. (top) First, an image filter creates a soft label for supervision. The
result is a blurred image with the rain removed. (bottom) We then use a deep network to learn how to remove the rain from the original image while preserving
background details. This is achieved by pairing a rainy image with a different clean image. The deraining network then is simultaneously responsible for
deraining the true image, and the clean image to which the removed rain has been added.

target model, but which cannot adapt to unsupervised tasks.
Unlike [11], [13], our work focuses on distilling knowledge
from the input data to construct extra supervision information
without using a pre-trained teacher network.

III. PROPOSED METHOD

A rainy image X is often considered as a summation
of a rain-free image Y and a rain-streak component (i.e.,
residual map) R [20], [33]. Given X the goal of image
deraining is to estimate Y , which can be equivalently done
by estimating the rain residual R. Assuming that the paired
data (X , Y ) is not available, our goal is to train a deraining
network using unpaired rainy and clean images. To generate
the necessary supervision information, we propose a two-stage
data distillation method as shown in Figure 3. We call this
method two-stage because we distill knowledge from the input
data twice to form soft and hard supervision.

• In the first stage, the rainy image passes through an image
filter that easily removes the rain streaks, but along with
much of the other high resolution as well. This generates
a rainless “soft label” for the rainy image to help guide
the deraining process.

• In the second stage, we use a deraining model as the data
distillator to remove the rain from the input rainy image
and add it to a different clean image to generate a new
“hard labeled” image pair.

Under the guidance of the soft rain-to-clean objective,
the network will learn to remove rain streaks, while the hard
clean-to-rain objective will force the network to learn to output
images with structural detail. Combining soft and hard tasks
in one learning objective, our network learns to output high-
quality rain-free images.

A. Data Transformation

Since only unpaired rainy and clean images are available,
we cannot use a pre-trained teacher network to generate
supervision, as is the case with previous knowledge distillation
methods [11], [13], [30], [31]. Fortunately, we can use some
image prior knowledge to generate extra information for
learning. For example, we know that rain streaks can be
significantly suppressed by some basic image transformation
techniques, such as filtering. We also know that the pixel
value of the rain is larger than that of the surrounding
pixels.

Based on these observations, we first use an image filter
to transform the unlabeled rainy image X into a soft label
Ys , i.e., a rain-free but blurred image (see Figure 3(a)). The
purpose is to use a fast technique for deraining that can guide
the learning. Note that Ys must be rain-free, and whether it
is blurred will not affect the performance of our method. Due
to the larger pixel values in the rain regions, the median filter
is better at removing rain than other filtering methods (see
Figure 4). Therefore, we adopt the median filter to create Ys

in experiments.
We can then pair X and Ys to provide supervision. However,

since Ys is blurred if we use it to train the deraining network
directly the results will be disappointing. To circumvent this
problem, we introduce an auxiliary block into the model,
called a detail enhancement block (see Figure 3(b)). To avoid
confusion, we refer to the combination of the deraining
network and detail enhancement block as the deraining model
in this paper. We provide more details about it in the following
subsections.

Given a rainy input X , the direct output of the deraining
model is a residual map R̂e, and the corresponding rain
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Fig. 4. One example of data transformation using different methods. (a) Rainy
image X . (b) Gaussian filter, kernel size=31. (c) Mean filter, kernel size = 31.
(d) Median filter, kernel size = 21.(e) Median filter, kernel size = 31.
(f) Median filter, kernel size = 41.

removal result is obtained by

Ŷe = X − R̂e. (1)

The soft objective for the deraining process has the following
loss function

LS = 1

M

M∑

i=1

1 − SSI M(Ŷ i
e , Y i

s ), (2)

where SSI M represents the SSIM loss [34] and M is the
number of training data.

B. Data Feedback

Following the soft objective Eq. (2), Ŷe will be rain-free
but blurred. To obtain high-quality derained results, some
additional constraints should be introduced so that the network
can learn to preserve the image details while removing rain.

We find that the deraining model can be regarded as a data
distillator. The process of the model taking in the input image
X and generating the corresponding residual map R̂e can be
seen as a distillation of X . The residual map R̂e contains all
the rain streaks of the input rainy image X , and we can use
this to generate extra knowledge. Specifically, if we add R̂e to
another clean image C to generate a new rainy image D,

D = C + R̂e. (3)

Then we have a new rainy/clean pair (i.e., D and C). The
new rainy image D and input image X have the same rain
streaks, but their backgrounds are different; both are sharp,
but the soft label for X is more blurry while the rainy D is
still high resolution. We refer to the new image pair C and D
as a hard labeled image pair because the rainy image D has a
corresponding clean and sharp label C . We then use the hard
labeled image pair to provide a hard objective for deraining.
However, soft and hard objectives are competing and they
cannot work in tandem for the same network. To mitigate this

TABLE I

EFFECTS OF L H AND L S ON R̂ AND R̂e

problem, we skip the detail enhancement block and only apply
the hard objective to the deraining network (see Figure 3(b)).
The deraining network is therefore guided to retain image
details while removing rain by the following hard objective,

L H = 1

M

M∑

i=1

1 − SSI M(Ĉi , Ci ), (4)

Ĉ = D − f (D; θ f ), (5)

where f denotes the mapping function of the deraining
network, θ f represents parameters of the network. Eq. (5)
implies that the direct output of the deraining network is also
a residual map. Combining the hard objective Eq. (4) with the
soft objective Eq. (2), the complete objective function L is

L = α · L H + β · LS, (6)

where α and β represent the weights of the two objectives.
Note that, the input to the detail enhancement block is a

residual map R̂, which is output by the deraining network,

R̂ = f (X; θ f )

= R + �̂, (7)

where �̂ represents some image details from the input rainy
image X . Guided by the soft objective Eq. (2), the detail
enhancement block learns to transform R̂ into a new residual
map R̂e with richer image details,

R̂e = g(R̂; θg)

= R + �̂e, (8)

where g denotes the mapping function of the detail enhance-
ment block, θg represents parameters of this block, and �̂e is
an enhanced version of �̂, which is used to blur the resulting
image by Eq. (1). This is why we call this block the detail
enhancement block.

On the other hand, the hard objective L H encourages the
deraining network to preserve image details while removing
rain. This means that the �̂ in R̂ Eq. (7) will gradually decay.
Ideally, a deraining network should be able to maintain only R
in R̂ but reduce ��̂� to 0. However, based on Eq. (6), the soft
objective LS also has an effect on the deraining network due to
gradient backpropagation. LS and L H are adversarial, the soft
objective LS will not allow ��̂� to converge to 0 (see Table I).
Because if ��̂� = 0, the soft objective will be an impossible
task. Following Eq. (8), the detail enhancement block can
always keep the rain streaks R in R̂e, but it is impossible
to transform 0 into the specific image details. Therefore,
the deraining network has to make a trade-off between these
two objectives, which results in ��̂� should be greater than 0.
Only in this case can the detail enhancement block reduce LS

by Eq. (8). One possible way to weaken the impact of the soft
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Algorithm 1 Two-Stage Data Distillation for Image Deraining

objective on the deraining network is to set α in Eq. (6) to
a large value and β to a small value (e.g. α = 100, β = 1).
However, this approach has two flaws. First, if α and β are
both fixed values, no matter how large α is, the deraining
network will converge to a bad equilibrium between soft and
hard objectives, where ��̂� is greater than 0. Second, a large
α will lead to a large gradient for the deraining network at the
beginning of training, making it difficult to converge.

To solve the above problems, instead of setting α and β in
Eq. (6) to fixed values, we change them dynamically,

α = t

1000
, (9)

β = 1000

1000 + t
, (10)

where t represents the number of iterations in the training.
(See Algorithm 1.)

From Eqs. (9) and (10), we see that α gradually increases
from 0 and β decreases from 1 during training. By dynamically
adjusting α and β, the balance between soft and hard obejec-
tives is constantly disrupted. As α gets larger, the deraining
network will only need to focus on hard objective, while
the soft objective will be negligible. Therefore, the deraining
network learns to preserve image details while removing rain,
which means the �̂ in R̂ Eq. (7) will guadually decay to 0.
The weakening of �̂ will also reduce the image details (i.e., �̂e)
contained in R̂e (see Figure 5). After convergence, ��̂� ≈ 0,
i.e.,

R̂ = f (X; θ f ) ≈ R. (11)

Following Eqs. (11) and (8), the detail enhancement block can
only maintain the R in R̂e, it is almost impossible to generate
additional image details (i.e. ��̂e� ≈ 0). Therefore,

R̂e = g(R̂; θg) ≈ R̂ ≈ R. (12)

Fig. 5. Illustrations of the convergence process of our deraining model.
(a)-(c): Rainy image X , soft label Ys and a reidual map obtained by
X − Ys . (d)-(k): The deraining network gradually learns to preserve image
details while removing rain, so the image details �̂ in R̂ gradually decay to 0.
The weakening of �̂ will also reduce the image details contained in R̂e . After
convergence, R̂e will consist of rain streaks only. The superscript represents
the number of iterations in training.

Note that when testing, we remove the detail enhancement
block and use the deraining network directly to get the final
output Ŷ ,

Ŷ = X − f (X; θ f ). (13)

By the way, Eq. (12) implies that after convergence, the out-
put of the detail enhancement block is almost the same as that
of the deraining network (i.e. Ŷ ≈ Ŷe).

C. Network Architecture

Our model consists of two parts, a deraining network
and a detail enhancement block. Here, we introduce the
network architecture of each part. The architecture of the detail
enhancement block has little effect on our method, so we
adopt a simple 3-layer convolutional network as the detail
enhancement block.

For deraining network, many well-designed network archi-
tectures [5]–[7], [22] have been proposed to better remove rain.
Most existing deep methods design a very complex network
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Fig. 6. The hierarchical aggregation architecture of our deraining network.
Hierarchical aggregation learns to extract the full spectrum of semantic and
spatial information from the network. The deraining network contains six
dilated blocks.

Fig. 7. The structure of the dilated convolution block. DF indicates the
dilated factor.

in order to obtain higher numerical performance on synthetic
datasets, but at the cost of some poor generalization, scalability
and practicality in real-world image applications.

Instead of directly cascading convolutional layers,
we design a hierarchical aggregation architecture, as shown
in Figure 6, to better fuse spatial and semantic information
across layers [35], which can lead to high quality images
reconstruction. We argue that effectively aggregating features
can lead to better rain removal as well as better parameter
and memory efficiency. On the other hand, unlike the usual
noise, the appearance of the rain streak is irregular, as shown
in Figure 2. To better capture the characteristics of rain,
we design the multi-scale dilated convolution block shown
in Figure 7 as the backbone of the deraining network. The
block is defined as follows,

Fl
1 = Wl

1 ∗ Fl−1,

el = Fl−1 − Fl
1,

Fl
3 = Wl

3 ∗ el,

Fl = Fl
1 + Fl

3, (14)

where F and W are feature maps and 3×3 convolution kernels,
respectively. The subscript number are dilation factors, ∗
indicates the convolution operation, l indexes block number.
The multi-scale dilated convolution block can also be viewed
as a self-correcting procedure that feeds a mapping error to
the sampling layer at another scale and iteratively corrects the
solution by feeding back the mapping error. Moreover, the fea-
tures between blocks are fused by the aggregation nodes. The
nodes learn to select and project important information to
maintain the same dimension at their output as a single input.

For both the deraining network and detail enhancement
block, the kernel size of each convolutional layer is 3 × 3,
and the number of feature maps is 16. The activation function

for all convolutional layers is ReLU [36], while the activation
function of the last layer is T anh.

D. Datasets

It is hard to obtain rainy/clean image pairs from real-
world data, but it is relatively easy to collect a large number
of real rainy images. We collect 2400 real rainy images
from the Internet, which are diverse in background and rain,
to form a new rainy dataset called Real Rain2400.1 We divide
these images into a training set and a testing set in a radio
of 7:1. In our method, we also need some clean images to
generate supervision. We use the 4744 natural images provided
by [37] as the clean set, and refer to it Clean4744. Note
that the images in Clean4744 are not related to those in
Real Rain2400.

E. Training Details and Parameter Settings

We use Pytorch and Adam [38] with a mini-batch size of 8
to train our model. For all experiments, we use a median filter
with a kernel size of 31 to generate soft labels. We randomly
select 128 × 128 image patchs from training set as inputs.
We set the learning rate as 1×10−4 for the first 150K iterations
and linearly decay the rate to 0 for the next 150K iterations.
All experiments are performed on a server with Inter Core
i7-8700K CPU and NVIDIA GeForce GTX 1080 Ti.

IV. EXPERIMENTS

We compare our method with several state-of-the-art derain-
ing methods: Joint Convolutional Analysis and Synthesis
(JCAS) [39], DDN [22], RESCAN [7], DID-MDN [6],
JORDER-E [24], SPANet [40], SS-IRR [28], UMRL [29] and
PReNet [26]. Unlike previous methods, which only pursue
higher numerical metrics on synthetic data, our desire is
devoted to a better qualitative generalization to real-world
scenarios.

A. Real-World Data

We use the testing set provided by SPANet [40] to conduct
a quantitative comparison. This testing set, which we call
T est1000, contains 1000 pairs of images with a size of
512 × 512. The rainy images and their corresponding ground-
truth in T est1000 are extracted from video, so they can
be regarded as real-wolrd data. Our model is trained with
Real Rain2400 and Clean4744. The pre-trained models of
the compared deep methods (except RESCAN) have been
released online, and we test them directly on T est1000.
Since all methods, except SPANet [40], have not trained on
the data from [40], the comparison on T est1000 can well
reflect the generalization performance of each method. SSIM
and PSNR are adopted to perform quantitative evaluations
in Table II. It is not surprising that SPANet achieves the highest
metrics. Besides that, our method significantly outperforms
other deep methods. This experiment shows that our method

1We will release our code and data.
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Fig. 8. Visual comparisons on real rainy images. We have chosen images that do not have typical look of synthetic rain and which would be difficult to
generate using current software. In many cases, the existing algorithms can remove rain that is homogenous and synthetic-like. However, when this is not
the case our algorithm still removes the rain while others fail. This is because data distillation allows our network to be trained on rain with this appearance,
while the other algorithms are not.

TABLE II

QUANTITATIVE EVALUATION RESULTS ON T est1000 DATASET

can generalize to real rain better than other CNNs trained on
synthetic data.

We show the qualitative results on real-world rainy images
in Figures 8 and 9. As can be seen, the model-based method
JCAS fails to remove rain due to the modeling limitations. The
effects of other fully-supervised methods are disappointing
since they cannot remove the real rain that they haven’t seen in
their paired training data. On the other hand, our method can
remove many types of rain, from small raindrops to long rain
streaks, and reconstruct an image that still preserves details.
We argue that, compared with other methods this approach is
more robust to realistic data.

B. Synthetic Data

The appearance and distribution of synthetic rain are very
different from the real rain. However, synthetic images are
perfectly aligned and high quality images, which can be used
to further evaluate the effectiveness of our method. We use
three public synthetic datasets provided by JORDER-E [24],
DDN [22] and DID-MDN [6] for comparison. The rain

TABLE III

QUANTITATIVE RESULTS ON SYNTHETIC DATASETS

streaks in these three datasets were synthesized using
different strategies. These three datasets contain 200,
1400 and 1200 testing images, respectively. We call them
Rain200L, DDN-data and DID-data. For a fair comparison,
all deep methods are retrained with these synthetic data. Note
that, using our two-stage data distillation approach, training
the deraining network requires only the synthetic rainy images,
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Fig. 9. One visual comparison on the real-world dataset “T est1000.”

Fig. 10. One visual comparison on the synthetic dataset “Rain200L.”

not ground-truth. We again use Clean4744 to generate the
hard objective for our model. To evaluate the gap between
our approach and the fully supervised methods, we also train
our deraining network directly in a fully supervised (“sv”)
manner. We call this trained model “Ours-sv”.

We show the quantitative evaluation in Table III. Admit-
tedly, our two-stage data distillation method currently can-
not outperform other fully-supervised methods on synthetic
datasets, but the results are satisfactory. In many real-world
cases, fully-supervised methods are often impractical, due to
the lack of paired data. Our method can still achieve decent
results in the absence of paired data, which shows the potential
value of our method in practical application. We also show the
visual results in Figures 10 to 12. As can be seen, our deraining
network can achieve comparable deraining performance with

other fully-supervised methods and the resulting images are
sharp and clean.

C. Running Time

The specific deraining network we use can also process new
images very efficiently. Table IV shows the average running
time of 100 testing images, all the test are conducted with
a 512 × 512 rainy image as input. The JCAS is a non-deep
method that is run on CPU according to the provided code,
while other deep methods are tested on both CPU and GPU.
Compared with other methods, our network has a relatively
fast speed on both CPU and GPU. As a pre-processing for
other high-level vision tasks, the rain streaks removal process
should be simpler and faster. Our deraining network is a
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Fig. 11. One visual comparison on synthetic dataset “DDN-data.”

Fig. 12. One visual comparison on the synthetic dataset “DID-data.”

Fig. 13. Deraining results of our deraining nertwork and detail enhancement block.

TABLE IV

COMPARISON OF PARAMETERS AND RUNNING TIME (SECONDS). THE SIZE OF THE TESTING IMAGES: 512 × 512

relatively shallow network that requires fewer calculations,
so it is more practical, for example, on mobile devices.

D. Ablation Study

We provide ablation studies to explore the effect of each
part of our model over the DDN-data [22].

1) Output of the Detail Enhancement Block: our model
consists of two parts, a deraining network and a detail

enhancement block. The input of the detail enhancement block
is a residual map R̂ generated by the deraining network.
After the training has converged, the deraining network can
preserve image details while removing rain. This results in
almost no image details remaining in R̂, making the detail
enhancement block unable to blur the derained image. As a
result, the output of the detail enhancement block (i.e., Ŷe)
is almost the same as the output of the deraining network
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Fig. 14. Deraining results by using different deraining nertworks. The subscript “DT” indicates that these networks are trained using our two-stage data
distillation method.

Fig. 15. Deraining results by using different α and β.

TABLE V

QUANTITATIVE RESULTS USING DIFFERENT MEIDAN FILTERS

TABLE VI

QUANTITATIVE RESULTS USING DIFFERENT NETWORK ARCHITECTURES.
(SV: FULLY SUPERVISED. DT: TWO-STAGE DATA DISTILLATION)

(i.e., Ŷ ). For the DDN-data, the detail enhancement block
yields results 0.880/28.34 dB in terms of SSIM and PSNR,
close to the deraining network of 0.890/28.50 dB. Subjective
results are presented in Figure 13. The deraining network
and the detail enhancement block show similar deraining
performance.

2) Effect of Soft Labels: in the above experiments, we use
a median filter with a kernel size of 31 to create soft
labels. We further explore the impact of soft labels on our
method. We use median filters with different kernel sizes
{21, 31, 41, 51} to generate different soft labels (see Figure 4).
The larger the kernel size, the more blurred the soft label.
Quantitative results are shown in Table V. As can be seen,
our method achieves similar results using different soft labels.
This means that our method is not sensitive to the quality of
soft labels. The only requirement is that the soft labels must
be rain-free.

3) Effect of Network Architectures: we also test the impact
of deraining networks with different architectures on our
method. We compare our hierarchical aggregation network
with 3 networks: a simple ResNet, which is the same as the
backbone of DDN; JORDER-E; PReNet. For JORDER-E and
PReNet, we use them as the deraining network in our method

TABLE VII

QUANTITATIVE RESULTS USING DIFFERENT α AND β

and use their default loss function to replace the hard objective.
Quantitative results are shown in Table VI. We observe that
our two-stage data distillation method is as sensitive as the
supervised method to the architecture of the deraining network.
This means that we can further improve the deraining results
of our method by adopting a better network architecture.
Note that although the deraining performance of our hier-
archical aggregation network is inferior to JORDER-E and
PReNet, the computing resources required by JORDER-E and
PReNet greatly exceed our network (see Table IV). To balance
performance and computational efficiency, our hierarchical
aggregation network is used as the default deraining network
in our method. Visual comparisons are shown in Figure 14.

4) Effect of α and β: in Eq. (6), we use α and β to
weight the hard and soft objectives. We dynamically change
the values of α and β during training. In this experiment,
we further explore the impact of α and β, which are set to fixed
values. We test β = 1 and α is selected from {10, 100, 300}.
As shown in Table VII, when α and β are set to fixed values,
the performance of our method is disappointing. No matter
how large α is, the deraining network has to make a tradeoff
between hard and soft objectives, so it fails to produce high-
quality rain-free images. If we dynamically adjust α and β,
the balance between hard and soft objectives will be constantly
disrupted. As α increases and β decreases, the deraining
network will only need to focus on the hard objective, i.e.
removing rain and preserving image details. Subjective results
are shown in Figure 15. We see that if α is set to 10 or
100, the deraining network tends to lose some image details
while removing rain. We also notice that the deraining network
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TABLE VIII

QUANTITATIVE RESULTS USING DIFFERENT NUMBER
OF DILATED BLOCKS

Fig. 16. Extension on single image snow removal.

fails to remove the rain when α = 300. This is because a
large α will lead to a large gradient for the deraining network
at the beginning of training, making it difficult to converge.
In contrast, by dynamically adjusting α and β, the deraining
network successfully learns to remove rain, preserve image
details, and improve visual quality.

5) Number of Dilated Blocks: Our hierarchical aggregation
network consists of six dilated blocks, and we also test the
impact of the block numbers. We choose the block num-
ber from the set {4, 6, 8, 10}. Quantitative results are shown
in Table VIII. As can be seen, increasing the block number
can generate better results due to larger modeling capacity.
However, larger block number has a limited contribution to
performance at the expense of computing speed and storage.
To make a trade-off between performance and speed, we set
the number of dilated blocks to 6.

E. Extensions

Our deraining network trained with Real Rain2400 can be
applied directly to image snow removal, as shown in Figure 16.
This is because the appearance and distribution of snow is
similar to that of some types of rain. Based on this observation,
we can further infer that our two-stage data distillation method
can also be applied to other image reconstruction tasks, such
as denoising and image inpainting, under specific parameter
settings. These tasks all seek to restore a clean image from the
damaged input image, which is damaged in a manner similar
to that of some rainy images.

On the other hand, we extend our mission to semantic
segmentation to verify the potential value of our network
in practical applications. Since rain streaks can blur and
block objects, the performance of semantic segmentation will
degrade in rainy weather. Figure 17 shows visual results of

Fig. 17. The 1st and 3rd rows: real rainy images and rain removal results
generated by DID-MDN, DDN and our deraining network. The 2nd row: the
corresponding segmentation maps of the 1st row generated using DeepLabv3+
[41]. The 4th row: the corresponding segmentation maps of the 3rd row.

semantic segmentation by combining with DeepLabv3+ [41].
It is obviously that rain streaks can degrade the performance of
DeepLabv3+, i.e., by missing objects and producing poor seg-
mentation maps. Compared with other methods, our method
can remove rain streaks more effectively and deliver better
segmentation results along object boundaries.

V. CONCLUSION

We have proposed a two-stage data distillation method for
single image rain removal. Instead of using a large amount of
paired synthetic data to train a non-robust network, we focus
on training a deraining network with powerful generalization
capabilities using only real rainy images. In the absence of a
clean label, we distill knowledge from the input data twice to
construct the corresponding soft and hard objectives. Guided
by the soft and hard objectives, our deraining network learns to
map the input rainy image into a high-quality rain-free image
by transferring rain to a high-quality clean image to create a
more realistic training pair. Experiments verify the superiority
of our two-stage data distillation method on real data and also
shows the potential of our method to other vision and image
restoration tasks.
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