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A B S T R A C T

Due to the light absorption and scattering, captured underwater images usually contain severe color distortion
and contrast reduction. To address the above problems, we combine the merits of deep learning and
conventional image enhancement technology to improve the underwater image quality. We first propose
a two-branch network to compensate the global distorted color and local reduced contrast, respectively.
Adopting this global–local network can greatly ease the learning problem, so that it can be handled by
using a lightweight network architecture. To cope with the complex and changeable underwater environment,
we then design a compressed-histogram equalization to complement the data-driven deep learning, in which
the parameters are fixed after training. The proposed compression strategy is able to generate vivid results
without introducing over-enhancement and extra computing burden. Experiments demonstrate that our method
significantly outperforms several state-of-the-arts in both qualitative and quantitative qualities.

1. Introduction

Particles suspended in the water lead to light absorption and scat-
tering [1], which severely degrade captured underwater image quality,
e.g., color distortion and contrast reduction. Therefore, obtaining high
quality underwater images is of great importance for consumer under-
water photography, ocean engineer [2], underwater archeology [3] and
aquatic robot inspection [4].

To improve the quality of single underwater images, various meth-
ods based on image enhancement, image restoration and deep learning
are well explored. Image enhancement-based methods [5,6] aim to
directly process image pixel values to enhance specific image charac-
teristics, e.g., color, contrast and brightness. While image restoration-
based methods [7,8] treat image quality improvement as an inverse
problem. This kind of methods usually utilize physical imaging models
and explore image prior as constraints to restore the clear images.
Recently, due to the powerful modeling capabilities and rich feature
representations learned from massive training data, deep learning has
achieved remarkable performance on both high-level vision tasks [9–
12] and image processing [13–16]. Several methods based on deep
learning [17–19] are also proposed to extract effective features from
synthetic data for improving the underwater image quality.

Despite achieving significant progress, addressing the light absorp-
tion and scattering problem in underwater images improvement is still
challenging. On the one hand, since the underwater imaging environ-
ment is complex and affected by too many factors, it is impractical to
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find a universal method by using only hand-crafted algorithms which
usually adopt simplified models and have small model capacities. On
the other hand, since the parameters of deep network will be fixed
after training, deep learning-based methods lack sufficient flexibility
to handle the changeable underwater environment. Once the type of
new underwater images is different from the training set, the deep
network will not be able to adjust according to the input data. In
addition, existing deep learning-based methods requires large numbers
of parameters to learn the complex mapping functions. This limits the
potential value of these deep learning methods in practical applications.

To effectively and efficiently improve the quality of underwater
images, this paper proposes a novel model by combining the merits
of deep learning and classical histogram equalization. Specifically,
instead of directly learning an image-to-image mapping function, we
first design a two-branch network to separately handle global color
distortion and local contrast reduction. This strategy is motivated by
the observation that most underwater images are dominated by a
relative single and uniform color distribution [5,20]. Adopting this
global–local network architecture can significantly simplify the learn-
ing problem. However, as mentioned above, a single and trained deep
network cannot cover all types of underwater images. Therefore, to deal
with the complex and changeable underwater imaging environment, we
further propose a compressed-histogram equalization to complement
the global–local network. As shown in Fig. 1, by taking advantages of
both data-driven deep leaning and hand-crafted image enhancement,
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Fig. 1. Examples of real-world underwater images (top) and our results (bottom). Our single model is able to handle various types of underwater images while only contains 7292
trainable parameters.

our single, lightweight and easy-to-implement model is able to handle
various types of underwater images.

Our global–local networks can be treated as a compensation process
which play a role similar to the image restoration. The network first
learns prior from training data to generates an intermediate image, in
which the lost information caused by light absorption and scattering is
compensated or restored to some extent. Then a compressed-histogram
equalization is utilized as a post-processing for obtaining a higher
image quality. After enhancing the intermediate image, the final result
contains more vivid colors and higher contrast. In fact, due to the ef-
fective information compensation, the proposed global–local networks
can provide an initial solution and benefit other existing methods,
especially in avoiding over-enhancement.

The contributions of this work are summarized as follows:

1. We propose a novel approach by integrating data-driven deep
learning and hand-crafted image enhancement for single under-
water images enhancement. We argue that it is impractical to
adopt only one kind of method to face such a complex under-
water imaging environment. By combining the deep learning
and image enhancement technology, our single model is able
to handle a wide variety of underwater images without extra
parameters and computational burden.

2. We propose a two-branch network to compensate both the global
distorted color and local reduced contrast. To effectively connect
the two network paths, a global residual-guide biases is further
designed to interact global and local information. The proposed
global–local networks help ease the learning process and support
effective enhancement in the subsequent module.

3. We propose a compressed-histogram equalization to further im-
prove the image quality. This algorithm, which is in the classic
histogram equalization framework, is efficient and able to gen-
erate vivid visual results without introducing over-enhanced
artifacts.

4. To our knowledge, the resulting easy-to-implement model is
lightweight while achieves the state-of-the-art performance on
both synthetic and real-world underwater images. We also show
how our method can benefit downstream applications, such as
diver detection and keypoints matching.

2. Related work

In general, existing methods of improving single underwater im-
ages can be roughly divided into three categories: enhancement-based
methods, restoration-based methods and deep learning-based methods.
The first two kinds of methods are hand-crafted designed, while the
deep learning-based methods aim to automatically learn a nonlinear
mapping function from training data.

2.1. Image enhancement-based methods

Image enhancement technology aims to produce visually pleasing
results based on some assumptions on high-quality images. This kind
of method usually focuses on enhancing specific objectives and directly
process image pixel values, regardless of the physical degradation
model. In [5], a fusion-based method is presented and achieve impres-
sive performance on underwater images and videos enhancement. This
method first derives a color corrected image and a contrast enhanced
version from the underwater image. Then a multi-scale fusion strategy
is adopted to fuse the two derived images into the final result. This
method is able to improve the global contrast and visibility with a fast
computational time. Recently, this method is further improved in [6] by
introducing a novel white balancing strategy and a revised fusing im-
plementation. By modifying [21], a Rayleigh-stretched contrast-limited
adaptive histogram method [22] is proposed to enhance underwater
images. The number of under-enhanced and over-enhanced regions can
be effectively constrained. Another line of enhancement tries to process
underwater images based on the simplified Retinex model. In [23], a
variational Retinex-based method is proposed for underwater image
enhancement. This method contains three steps, i.e., color correction,
layer decomposition and post-enhancement. In [24], the authors in-
troduce an extended multi-scale Retinex-based method and simulate
the underwater turbidity conditions by using mixture of milk and fruit
juice.

2.2. Image restoration-based methods

Image restoration-based methods treat the underwater image en-
hancement as an ill-posed inverse problem. In this line of methods, the
physical imaging model and various prior are explored to estimate the
desired results from degraded inputs. To the underwater community,
the most widely used imaging model is the Jaffe–McGlamery under-
water optical model [25,26], which is a simplified radiative transfer
model. Mathematically, this model is often expressed as:

𝐈=𝐉𝑒−𝜂𝐝 + 𝐀(1 − 𝑒−𝜂𝐝), (1)

where 𝐈 is the captured underwater image, 𝐉 is the clear image, 𝐀 is
a back-scattered light, 𝐝 is the distance between the camera and the
object and 𝜂 is the attenuation coefficient. The exponential term 𝑒−𝜂𝐝

is also known as the transmission 𝐭 through the underwater medium.
To invert Eq. (1) to estimate 𝐉, many researchers focus on exploring
effective image prior to constrain this inverse problem [27–30]. In [8],
the authors employ a haze-lines prior [31] to estimate the transmission.
In [32], the transmission is estimated by proposing a prior which
exploited the attenuation difference among the RGB channels. The light
scattering can be removed by using the predicted transmission. In [33],
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the authors estimate the transmission by combining the proposed blur-
riness prior with the method [32]. Since Eq. (1) has a similar form to
the hazy imaging model [34], the popular dark channel prior (DCP),
which is initially proposed for single image de-hazing [35], has been
widely modified and utilized to restore underwater images. In [36],
based on DCP, a wavelength dependent compensation algorithm is ex-
plored to restore the clear image. In [37], an underwater dark channel
prior is specifically designed for underwater scenarios, which helps
estimate more accurate transmission than the conventional DCP. Based
on the observation that the red component reciprocal increases with the
distance to the camera, a red channel prior [38] is introduced to restore
the colors with short wavelengths. In [39,40], the authors utilize the
color-lines prior [41] and a modified DCP to estimate the back-scattered
light and transmission, respectively. In [7,42], a contrast enhancement
algorithm is combined with an image de-hazing algorithm to generate
two enhanced results. One contains vivid color and the other has high
contrast to reveal image details. Very recently, a generalized dark
channel prior [43] is proposed to estimate the transmission and recover
the degraded images.

However, due to the complex and changeable underwater environ-
ment, hand-crafted prior does not always hold. For example, when
large white objects or artificial light exist in underwater images, the
underwater dark channel prior will fail. Additionally, in underwater
environment, color distortion strongly depends on the different light
wavelengths [44–46]. Directly using the simplified model (1) cannot
accurately describe the process that the selective absorption of colors.
Therefore, in this work, we do not resort to an explicit physical model
to compensate and restore the lost information.

2.3. Deep learning-based methods

Different with hand-crafted methods, deep learning technology aims
to automatically extract representations and learn nonlinear mapping
functions from training data. To the underwater community, several
deep learning-based methods are also proposed to estimate the clear
image. In [47], the authors synthesize underwater images by adopting
Eq. (1) for network training. However, light absorption along horizontal
direction is not taken into consideration, which makes the synthetic
data unable to accurately simulate the real underwater environment. To
address the above problem, [19,48] utilize the generative adversarial
networks (GANs) [49] to generate underwater images in the weakly
supervised learning manner. By using the generated data, a real-time
color correction network is further trained to improve the underwater
image quality. In [50], a residual multi-scale dense block is designed
and deployed in the generator to perform underwater images enhance-
ment. In [17], the GANs are also adopted to generate a underwater
dataset for underwater image restoration. In [18], a pixels disrupting
strategy is introduced to improve the convergence speed and accuracy
of network training. In [51], a weakly supervised model for underwater
image color correction is introduced. In this method, a nonlinear cross
domain mapping function of color transfer is learned, which relaxes
the need for explicit one-to-one paired labels. In [52], an underwater
residual convolutional neural network is proposed to predict the trans-
mission. This deep model is trained on synthetic underwater images
generated by using wavelength-dependent attenuation prior. Recently,
by integrating domain-knowledge priors and information from training
data, two deep prior ensemble framework [53,54] are proposed for
underwater images enhancement.

Despite the powerful nonlinear modeling capacity, the performance
of existing deep learning-based underwater image enhancement meth-
ods do not match the success of recent deep learning-based low-level
vision problems [13–16,55]. This is because collecting sufficient and
effective real-world underwater/clear image pairs for training deep
networks is very difficult. Meanwhile, due to the complex underwater
imaging environment, the synthetic underwater images are unable to
cover all possible underwater conditions. Since the parameters of deep

networks are fixed after training, the prior and features learned from
synthetic data cannot well generalize to the changeable real-world
scenarios, which limits the practical values of deep learning-based
methods.

3. Methodology

Based on the above analysis, we argue that utilizing only hand-
crafted or deep learning method cannot well handle the tough under-
water environment. Therefore, we choose to take advantages of both
kinds of methods for underwater images enhancement. We illustrate
the proposed framework in Fig. 2. As discussed in more detail below,
to the problem of global distorted color and local reduced contrast, we
first utilize a lightweight two-branch network to compensate the lost
information. We then introduce a compressed-histogram equalization
to complement the global–local networks to further improve visual
quality. The final enhanced image thus contains more vivid color and
higher contrast.

3.1. Global-local networks

3.1.1. Motivation
Since deep learning has powerful modeling capabilities, an intuitive

way to enhance underwater images quality is to directly train a deep
network that transforms the input 𝐈 to output 𝐉. However, different
with other image restoration problems, e.g., de-noising [14] and super-
resolution [13], the underwater image contains not only local details
lost but also global color distortion over all image pixels. Therefore, to
underwater community, most existing deep learning-based [17,48,56]
methods usually adopt the U-Net architecture [57] to capture both
global and local features, at the cost of parameters burden. However,
the spatial information, e.g., textures and structures, contained in the
down-sampled features still introduce interference for color correction.
Therefore, it is difficult to simultaneously compensate global distorted
color and local reduced contrast by directly learning an image-to-image
mapping function, even with the help of GANs [49] to extract the
underlying distribution.

To effectively address the above issues, we instead use a priori
knowledge to separately process the global average and local centered
image. The motivation for designing this global–local network is that
most underwater images are dominated by a relative single and uniform
color distribution. In other words, the global average of an underwater
image is able to represent its overall color information. This inspires
us to design our global–local networks to separately process the global
average 𝜇𝐈 and the centered image 𝐈𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝐈 − 𝜇𝐈.

3.1.2. Network architecture
As shown in Fig. 2, the top branch is used to compensate global

color information while the bottom one aims to improve local con-
trast. We name the two sub-networks as Network-G and Network-L,
respectively. In the Network-G, we input both average 𝜇𝐈 and standard
deviation 𝜎𝐈 to provide not only first-order color measurement but also
second-order dispersion information. To color images, both 𝜇𝐈 and 𝜎𝐈
are 1 × 3 vectors. We concatenate 𝜇𝐈 and 𝜎𝐈 and adopt a fully connected
network to construct the top branch network. Inspired by the densely
connected networks [11], we concatenate all hidden features to predict
the residual 𝛥

∧
𝜇 and use it to generate the compensated average

∧
𝜇𝐉. The

Network-G contains four layers and can be expressed as:

𝐡1 = 𝑅𝑒𝐿𝑈 (𝐰1 ⋅ 𝑐𝑜𝑛𝑐𝑎𝑡(𝜇𝐈, 𝜎𝐈) + 𝐛1),
𝐡2 = 𝑅𝑒𝐿𝑈 (𝐰2 ⋅ 𝐡1 + 𝐛2),
𝐡3 = 𝑅𝑒𝐿𝑈 (𝐰3 ⋅ 𝐡2 + 𝐛3),

𝛥
∧
𝜇 = 𝐰4 ⋅ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐡1,𝐡2,𝐡3) + 𝐛4,
∧
𝜇𝐉 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝜇𝐈 + 𝛥

∧
𝜇), (2)
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Fig. 2. Our proposed model for underwater image enhancement. The global–local network contains two branches, i.e., Network-G for global average and Network-L for local

contrast. The compensated image
∧
𝐉 is further enhanced by our compressed-histogram equalization to obtain the final result

∧
𝐉𝑓𝑖𝑛𝑎𝑙 .

Fig. 3. Global residual-guide bias in our CNN unit. The 𝛥
∧
𝜇 is fully connected to

produce the vector 𝐛∗. The new feature map is generated with common convolutional
operations, except for using 𝛥

∧
𝜇 to generate the bias.

where 𝐡 is the hidden features, 𝐰 and 𝐛 are learnable weights and
biases, 𝑅𝑒𝐿𝑈 (⋅) and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(⋅) are the rectified linear units and sig-
moid functions, respectively. 𝑐𝑜𝑛𝑐𝑎𝑡(⋅) is the concatenation. The sigmoid
activation is utilized to constrain the range of

∧
𝐉𝐉 between 0 and 1.

The Network-L has a similar architecture with the top one, except
for using the convolutional operations to process the input matrix
𝐈𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 . It is worth noting that 𝐈𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 still contains color distortion
even the average is subtracted. Simply stacking convolution layers
tends to remove distorted color information, which is not good for
accurate local contrast compensation. To address this issue, we propose
a global residual-guide bias, as shown in Fig. 3, to replace the initialized
bias with value zero used in common deep CNNs. We use the symbol
𝐛∗ to denote this new bias that depends on the predicted residual 𝛥

∧
𝜇

and varies with respect to this global compensated information. We
generate 𝐛∗ by using a one-layer fully connected network:

𝐛∗ = 𝐰 ⋅ 𝛥
∧
𝜇, (3)

where 𝐰 is the learnable weight to perform a fully connection without
bias. The Network-L structure also contains four layers can be expressed
as:

𝐇1 = 𝑅𝑒𝐿𝑈 (𝐖1 ⊗ 𝐈𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 𝐛∗1),
𝐇2 = 𝑅𝑒𝐿𝑈 (𝐖2 ⊗𝐇1 + 𝐛∗2),
𝐇3 = 𝑅𝑒𝐿𝑈 (𝐖3 ⊗𝐇2 + 𝐛∗3),
𝐇3 = 𝑅𝑒𝐿𝑈 (𝐖⊗𝐇 + 𝐛∗),

∧
𝐉𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝐖4 ⊗ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐇1,𝐇2,𝐇3) + 𝐛∗4 , (4)

where 𝐖 is the learnable convolutional kernels, 𝐇 is the hidden feature
maps and ⊗ is the convolutional operation. The convolutional opera-
tion used in our global–local networks is the same with standard CNNs,
except for using 𝛥

∧
𝜇 to generate the bias 𝐛∗. The kernels 𝐖 are used to

extract local features while the 𝛥
∧
𝜇 guide the global direction of contrast

compensation. In addition, during the back-propagation process, the
gradient of the Network-L also flows through the Network-G, which
provides more supervised information for compensating distorted col-
ors. In this way, the two branch networks can be effectively connected
and interacted. The intermediate image with compensated information
can be obtained by:
∧
𝐉 =

∧
𝐉𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 +

∧
𝜇𝐉. (5)

3.1.3. Loss function
Given a training set {𝐈, 𝐉𝐺𝑇 }, where 𝐈 are the underwater images

and 𝐉𝐺𝑇 are the corresponding clear images, the most widely used
loss function for training a network is 𝓁2 loss, i.e., the mean squared
error. However, 𝓁2 usually generates over-smoothed results due to the
squared penalty that works poorly at edges in an image. Following [58],
we choose the SSIM [59] as our loss function 𝑆𝑆𝐼𝑀 for reconstructing
underwater images:

𝑆𝑆𝐼𝑀 = 1 − 𝑆𝑆𝐼𝑀(𝐉𝐺𝑇 ,
∧
𝐉), (6)

where 𝑆𝑆𝐼𝑀(⋅) is the SSIM and the detailed definition can be found
in [59].

Since the proposed global–local network has two branches, it may
cause instability if only the SSIM loss is used. To obtain a stable solu-
tion, we also formulate an average loss 𝑎𝑣𝑔 to intentionally guide the
Network-G training. This loss is defined based on the cosine distance
of two 1 × 3 vectors:

𝑎𝑣𝑔 = 1 − cos(𝜇𝐺𝑇 ,
∧
𝜇𝐉), (7)

where cos(𝐚,𝐛) = 𝐚T𝐛
‖𝐚‖‖𝐛‖ , (⋅)𝑇 is transpose operation and ‖⋅‖ is mag-

nitude of the vector. Since the 𝓁2 loss only numerically measures the
values difference, it cannot ensure that the vectors have the same direc-
tion. Moreover, the calculating process of cosine, which is simple and
fast for computation, has already implicitly measured the 𝓁2 difference.

The overall loss function consists of two components and is mini-
mized during the network training. It is expressed as:

𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐼𝑀 + 𝛼𝑎𝑣𝑔 , (8)

where 𝛼 is the corresponding weight.

3.2. Compressed-histogram equalization

After network training, the parameters of proposed global–local
networks will be fixed. Since the underwater imaging environment is
complex and changeable, it is impractical to use single trained network
to cover all kinds of underwater images. Therefore, we further intro-
duce a compressed-histogram equalization to complement the trained
global–local networks and generate results with more vivid colors and
higher global contrast.

Due to the simplicity and quickness, histogram equalization (HE)
[60] is the most widely used global contrast enhancement technique.
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HE is designed based on the assumption that the desired histogram
should meet a uniform distribution. The enhanced image is obtained
by matching the cumulative input histogram to the uniform histogram.
However, one main drawback of HE is that it often generates over-
enhanced artifacts when large peaks exist in the input histogram. In
this work, we propose a simple yet effective compressed-histogram
equalization in the classical HE framework. Specifically, we adopt
a compression operation to modify the input histogram. By adding
this simple operation into the classic HE procedure, the compressed-
histogram equalization can generate naturally looking results without
introducing artifacts.

Given the compensated image
∧
𝐉, the goal is to generate the final

enhanced image
∧
𝐉𝑓𝑖𝑛𝑎𝑙 with a pixel value range of

∧
𝐽𝑚𝑖𝑛 and

∧
𝐽𝑚𝑎𝑥.

To avoid the over-enhancement problem, an intuitive solution is to
compress peaks existed in the input histogram. Due to the character of
compression and monotonically increasing, we adopt the logarithmic
operation to modify the input histogram. Utilizing the log-operation
can effectively compress large peak values while preserves the order of
the input histogram. Additionally, as described by Weber’s law [61],
the log-operation accurately characterizes human visual perception,
which implicitly modify the input histogram according to human visual
preferences. Other effective compression methods can also be used to
compress the histogram.

First, the compressed histogram 𝐡𝐜𝐨𝐦𝐩 is simply generated by:

𝐡𝑐𝑜𝑚𝑝(𝑙) = log(𝐡(𝑙)), (9)

where 𝐡 is the input histogram, 𝑙 = 1,… , 𝐿 and 𝐿 is the number of
the grayscale levels that exist in

∧
𝐉. Then, the distribution function 𝑓 is

obtained by normalizing 𝐡𝐜𝐨𝐦𝐩:

𝑓 (𝑙) = 𝐡𝑐𝑜𝑚𝑝(𝑙)∕
𝐿
∑

𝑡=1
𝐡𝑐𝑜𝑚𝑝(𝑡). (10)

The uniform distribution function 𝐹 is computed as:

𝐹 (𝑙) =
𝑙

∑

𝑡=1
𝑓 (𝑡). (11)

The final enhanced image
∧
𝐉𝑓𝑖𝑛𝑎𝑙 can be obtained by using 𝐹 ,

∧
𝐽𝑚𝑖𝑛 and

∧
𝐽𝑚𝑎𝑥 in a standard lookup table-based HE procedure. We point out that,
by removing Eq. (9), this algorithm equals the classic HE processing.
Adding the log-operation is easy to implement and does not introduce
a large computational burden. In this work, each RGB channel is sep-
arately enhanced. In Fig. 4, we use a gray-scale image to demonstrate
the effect of our proposed compressed-histogram equalization. When
peaks exist in the input histogram, the classical HE tends to produce
over-enhanced results as shown in Fig. 4(b). By adding the simple log-
operation, the global enhanced result has a significant improvement
on artifacts suppression and naturalness preservation. Meanwhile, the
histogram shape is well retained shown in Fig. 4(c).

One result on a real-world underwater image is shown in Fig. 5.
It can be seen that the global–local network first compensates the lost
information. Both global color and local contrast are significantly im-
proved, shown in Fig. 5(b). Then, by adding the compressed-histogram
equalization, the enhanced result contains more vivid color and higher
global contrast, shown in Fig. 5(d). Moreover, compared to the classical
HE in Fig. 5(c), our method achieves a good trade-off between image
enhancement and naturalness preservation.

3.3. Discussion

Our model is composed of two parts: global–local networks and
compressed-histogram equalization. The former is used to compensate
lost information which can be seen as an intermediate result. The
later aims to further improve the image quality and can be seen as a

post-processing stage. We first utilize our domain specific knowledge
to compensate the distorted color by predicting the global average.
Compared to learning an image-to-image transformation, mapping one
1 × 6 vector (i.e., concatenated 𝜇𝐈 and 𝜎𝐈) to a 1 × 3 vector (i.e.,

∧
𝜇𝐉)

is significantly easier for a deep learning model. This is because the
mapping range has been significantly decreased. By using this divide-
and-conquer network architecture, the problem of underwater image
information compensation can be easily handled.

Since our compressed-histogram equalization does not require train-
ing data, it is able to complement global–local networks to handle new
kinds of underwater images. Meanwhile, the output of global–local net-
works also provides a good initial result for the compressed-histogram
equalization.

Moreover, our method is easy to implement, all network modules
are constructed by using standard deep learning operations, e.g., fully
connected layers and convolutional layers. While the proposed
compressed-histogram equalization is in the classical HE framework.
This is because we decompose the tough underwater image problem
into different easy sub-problems, which are separately handled by
each part of our model. Since the sub-problems are simplified, the
corresponding parts can well solve these problems with relative simple
operations. In this work, we mainly focuses on how to well handle
underwater images from the perspective of signal processing. Other ad-
vanced methods, such as squeeze-and-excitation networks blocks [62],
non-local networks [63] and 2D histogram equalization [64], can also
be incorporated into our framework to further improve the image
quality.

4. Experimental results

In this section, we first present the experimental settings and then
conduct several groups of experiments to verify the effectiveness of the
proposed method.

4.1. Experimental settings

Parameters setting. For the global–local networks, all kernel size
for convolutions are 3 × 3 and the numbers of hidden layers (both
Network-G and Network-L) are 16. The total numbers of trainable
parameters are 7292, far fewer than the hundreds of thousands often
encountered in deep learning. The parameter 𝛼 is empirically set as 0.5.
For the compressed-histogram equalization, the entire dynamic range
is used, i.e.,

∧
𝐽𝑚𝑖𝑛 = 0 and

∧
𝐽𝑚𝑎𝑥 = 28 − 1 = 255 for 8-bit images.

Network training setting. We use synthetic underwater images
from [17] and [65] as our training and testing data. The dataset of [17]
contains 6128 synthetic images, of which the first 5000 images used for
training and the rest 1128 images for testing. While the dataset of [65]
contains 890 synthetic images, of which the first 700 images used for
training and the rest 190 images for testing. Note that we only train
a single model to handle both datasets. We use TensorFlow [66] to
train our networks using the Adam solver [67] with a mini-batch size
of 1. We set the learning rate as 0.001. The network is trained in an
end-to-end fashion and finished after 40 epochs.

Compared methods. We compare our model with five state-of-
the-art methods, which include one image enhancement-based ap-
proach (fusion-based [5]), three image restoration-based approaches
(histogram distribution prior [7], haze-line prior [8] and blurriness-
based [33]), and one deep learning-based approach (DL-based [50]).

4.2. Experiments with ground truth

In this section, two datasets with ground truth are chosen for
comparison. One is from [17] and contains 1128 testing images. This
dataset is generated by using the underwater imaging model. The other
is from [65] which contains 190 synthetic images. Note that this dataset
from [65] is constructed by using real-world underwater images while
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Fig. 4. An example of our proposed compressed-HE algorithm on a gray-scale image. Bottom shows corresponding histograms.

Fig. 5. Effect of each part of our model. The global–local network compensates the lost information shown in (b). Using the classical HE to enhance
∧
𝐉 introduces obvious

over-enhanced artifacts shown in (c). While utilizing our compressed-histogram equalization generates a natural looking result with more vivid color and higher contrast, as shown
in (d).

Fig. 6. Visual comparisons on synthetic underwater images. The testing images in the first three rows are from the dataset [17] while the rest are from [65].

the corresponding clear images are provided according to laborious
pairwise comparisons.

Fig. 6 shows visual results from the two dataset. As can be seen,
histogram distribution prior [7] tends to generate obvious reddish
color deviation (2nd and 3rd rows) while haze-line prior [8] and
blurriness-based [33] fail to correct distorted colors (4th and 5th rows).
This because the above three methods are designed based on hand-
crafted prior, which may not be strong enough to handle all types of
underwater imaging environment. The similar problem also exist in

the DL-based method [50]. Since the back-scattered light and piece-
wise constant transmission are jointly obtained through down-sampled
feature map, local textures and details will lead to inaccurate feature
extraction and image restoration. The fusion-based method [5] has rela-
tively good performance on color correction and contrast enhancement.
However, the performance is limited when facing underwater images
under harsh conditions, e.g., insufficient illumination (1st row) and ex-
treme bluish appearance (5th row). This is due to the limitation of this
method which directly maps pixels without considering the imaging
process. Our model has comparable visual results with fusion-based
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Fig. 7. Error bars of statistical analysis of different methods. The values of ground truth are indicated by red line and green line, respectively.

Fig. 8. Visual comparisons on the UCCS dataset [68]. The proposed method is able to handle all the three degrees of color cast.

method and outperforms other methods. Moreover, our single model is
able to handle different kinds of underwater images. The reason is two-
fold: first, we design our network to explicitly and separately process
the global average and local contrast. Without interference from other
components, the proposed global–local networks is able to extract more
accurate features for more accurate image compensation. Second, we
utilize the HE technology to further improve the image quality. The
defect of fixed parameters of trained network is thus complemented.
Therefore, although we only train a single network with relatively few
parameters, these additional aspects enables our whole model to well
handle different kinds of underwater images.

We then show a statistical analysis of different methods in Fig. 7.
On the dataset [17], the average and standard deviation of inputs are
very close to the ground truth. This is because this dataset adopt a
relatively simple operations to synthesize underwater images. While
on the dataset [65], which built on real-world underwater images, the
mean of global averages of our methods has the smallest distance from
ground truth. Meanwhile, our standard deviation is relatively narrow,
which implies that the over-enhancement is well suppressed since the
standard deviation represents the intensity of changes in image content.

We also adopt PSNR and SSIM [59] to perform quantitative evalu-
ations in Table 1. Our method has the best PSNR and SSIM values on
the two datasets. Though we do not use the 𝓁2 loss, which is also used

7



X. Fu and X. Cao Signal Processing: Image Communication 86 (2020) 115892

Fig. 9. Visual comparisons on real-world underwater images. The proposed method is able to well enhance different kinds of real-world underwater images with naturalness
preservation.

Table 1
Average SSIM and PSNR comparisons with first and second best performances indicated.

Dataset Underwater Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

1128 images [17] 0.61 15.83 0.63 16.81 0.40 12.26 0.40 11.93 0.53 13.70 0.63 16.55 0.66 18.10
190 images [65] 0.79 19.40 0.86 21.33 0.67 15.08 0.80 17.09 0.77 16.03 0.79 18.03 0.88 21.98
Ideal value 1.00 +∞ 1.00 +∞ 1.00 +∞ 1.00 +∞ 1.00 +∞ 1.00 +∞ 1.00 +∞

for calculating PSNR, our model still achieves the best PSNR. Note that
the overall color of the image has the greatest impact on PSNR since
PSNR measures global pixel errors. This demonstrates the validity of
using the global average to compensate the global distorted color.

4.3. Experiments without ground truth

To demonstrate the generalization ability of our model, we test our
model on two real-world datasets. The first is the underwater color
cast set (UCCS) which contains 300 images provided by [68]. The
images of this dataset are divided into green–blue, blue and green
according different color cast degrees. We also collect 200 real-world
underwater images from the Internet as the second dataset. The images
of this dataset contain various and severe degradations. Figs. 8 and 9
shows visual results on the two real-world datasets. As can be seen, the

compared methods cannot well handle all types of degraded images.
For example, the fusion-based method [5] has obvious reddish color
deviation, while other methods cannot accurately correct colors with
severe distortions. On the contrary, our model is able to consistently
generate natural looking results on all testing images. This is be-
cause our model combines the merits of data-driven deep learning and
hand-crafted image enhancement, which helps to deal with real-world
scenarios that not contained in the training data.

Since no ground truth exists, we cannot definitively say which
method performs quantitatively the best. Instead, we adopt two
reference-free metrics, i.e., UIQM [69] and UCIQE [70] for evaluation.
These two metrics are widely used for evaluating real-world underwa-
ter image quality. A higher UIQM value indicates the image is more
consistent with the human visual perception. A higher UCIQE value
indicates the image has better balance among the chroma, saturation
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Table 2
Average UIQM and UCIQE values on the UCCS dataset [54], with first and second best performances
indicated.

Underwater Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours

UIQM 0.21 2.50 2.98 3.79 2.33 2.34 2.50
UCIQE 0.41 0.52 0.53 0.67 0.50 0.51 0.57

Fig. 10. Radar charts of average user study scores on overall visual quality, naturalness preservation, contrast enhancement, color perception and brightness improvement. The
score 1 represents the worst quality and 5 represents the best quality.

Fig. 11. Convergence curve of network training.

and contrast. The average scores of 200 testing real-world images
are shown in Tables 2 and 3. As can be seen, our method achieves
promising results on both UCIQE and UIQM metrics.

However, as with all reference-free image quality metrics, UCIQE
and UIQM are arguably not always subjectively correct. To provide
realistic feedback and quantify the subjective evaluation, we also con-
structed an independent user study. In this experiment, we use the
results of all the 500 real-world underwater images scored with UCIQE
and UIQM. For each image, we randomly order the outputs of the all
algorithms, as well as the original underwater image, and display them
on a screen. We then separately asked 10 participants to rank each
image from 1 to 5 subjectively according to five measurements, i.e., the
overall visual quality, naturalness preservation, contrast enhancement,
color perception and brightness improvement. The participants are
given instructions that color distortion and over-enhanced artifacts
should decrease the quality, and high contrast should increase the
quality. The score 1 represents the worst quality image and 5 represents
the best quality image. We show the average overall scores in Table 4.
As is evident, the fusion-based method [5] does clearly improve the
underwater image, while our model is subjectively superior to all meth-
ods. Moreover, we also show the radar chart of the five measurements
in Fig. 10. It is clear that our method has promising results on all

measurements, which gives additional support that our model improves
the subjective visual qualities of real-world images.

4.4. Convergence and testing runtime

We first show the average training loss as a function of training
epoch in Fig. 11. Note that the average loss 𝑎𝑣𝑔 has low values in
the initial epochs of training, which proves that the problem of global
average compensation is easy to handle. Since we simplify the problem
in a divide-and-conquer way, this allows our network to converge
quickly and easily fit the mapping functions of each subproblem.

To demonstrate the efficiency of our model, we further compare
the average testing runtime of different methods. Three different im-
age sizes are chosen and each one is tested over 100 images. All
experiments are performed on a PC with Intel(R) i7-8700 CPU, 32
GB RAM and one NVIDIA GTX 1080Ti GPU. The deep learning-based
methods are tested on both CPU and GPU. The average running time
is shown in Table 5. The fusion-based method [5] is the fastest across
different image sizes on CPU, while our model ranks the second fastest.
This is because our network is completely feed-forward after network
training. Other image restoration-based methods have relatively slow
running time since complicated inferences are required to process each
new image. Meanwhile, our method can be significantly accelerated
by using parallel GPU implementation. Note that our global–local
networks contains relatively few parameters and compact structures,
which makes our model require less operations than the DL-based
method. We further record the average run time of each stage on CPU
for clarity. As shown in Table 6, the global–local network consumes
most of the running time. This is because our network contains two
branches, and the bottom branch needs to wait for the top branch
to finish running. In addition, compared to other operations, convolu-
tional operations require more calculations and runtime. Therefore, the
global–local network is significantly slower than compressed-histogram
equalization.

4.5. Ablation studies

Here we discuss different configurations to study their impact on
performance.
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Fig. 12. Two examples of using global residual-guide bias.

Table 3
Average UIQM and UCIQE values on our 200 real-world images, with first and second best performances
indicated.

Underwater Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours

UIQM 0.98 3.48 3.13 3.22 3.12 2.27 3.77
UCIQE 0.46 0.52 0.56 0.52 0.54 0.48 0.60

Table 4
Average scores of user study on real-world images, with first and second best performances indicated.

Underwater Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours Ideal

Scores 1.48 3.67 2.84 2.94 2.35 3.42 4.21 5

Table 5
Comparison of testing runtime (seconds).

Image size Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours

CPU CPU CPU CPU CPU GPU CPU GPU

512 × 512 0.32 1.02 20.54 22.66 1.24 0.07 0.51 0.05
1024 × 1024 1.10 3.49 72.54 98.74 4.25 0.17 1.95 0.08
2048 × 2048 4.59 13.00 292.76 471.89 11.57 0.37 7.49 0.19

Table 6
Comparison of testing runtime (seconds) of each stage on CPU.

Image size Global–local networks Compressed-HE All

512 × 512 0.32 0.19 0.51
1024 × 1024 1.38 0.57 1.95
2048 × 2048 6.03 1.46 7.49

4.5.1. Network breadth versus depth
In general, increasing the network capacity helps to improve the

performance. This increased capacity mainly comes in two forms: one is
to increase the network breadth by using more features in each hidden
layer, and the other is to increase the network depth by stacking more
hidden layers. In this section, we test the impact of network breadth
and depth on the two synthetic datasets. Specifically, we test different
feature numbers 𝑁 ∈ {8, 16, 32} and depth 𝐷 ∈ {3, 4, 5}. To eliminate
the influence of compressed-histogram equalization, we calculate PSNR
and SSIM results on

∧
𝐉 of the 190 images [65] and the results are

shown in Table 7. As is clear, due to the larger nonlinear modeling
capacity, adding more hidden layers achieves better results over in-
creasing the features number per layer. However, keeping increasing
the hidden layer brings only limited improvement. This is because the
learning problem is well simplified by using our global–local strategy.
A relatively lightweight network is able to tackle the problem. More-
over, continuously increasing the network capacity without adding new

Table 7
Average SSIM/PSNR values on 190 images [65] using different network sizes.

𝑁 = 8 𝑁 = 16 𝑁 = 32

𝐷 = 3 0.836/19.941 0.839/20.057 0.841/20.121
𝐷 = 4 0.840/20.124 0.846/20.222 0.846/20.327
𝐷 = 5 0.844/20.214 0.847/20.254 0.848/20.289

training data may lead to an over-fitting problem. Thus, we chose depth
𝐷 = 4 and feature numbers 𝑁 = 16 as the default setting.

4.5.2. Global residual-guide bias
We also test the impact of the proposed global residual-guide bias

𝐛∗. We train a network with the same structure except for using
randomly initialed biases. We show PSNR and SSIM results in Table 8
and the results are very close. However, as shown in Fig. 12, without
using global residual-guide bias tends to generate reddish color devi-
ation, which cannot be reflected by PSNR and SSIM. This is because
the residual 𝛥

∧
𝜇 represents the global scale and direction that need

to be compensated, which can be further utilized provides guidance
information for the local contrast compensation process. In addition,
the deployment of this global residual-guide bias introduces very few
parameters while can produce natural looking results.
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Fig. 13. An example by using different loss functions. SSIM + average loss achieves the best trade-off between color correction and contrast enhancement.

Fig. 14. Our results on the underwater images captured by different cameras. Top: underwater images, bottom: our results. These images are captured approximately one meter
away from the subjects and provided by [6]. From left to right, the camera types are Canon D10, Olympus Tough 6000, Olympus Tough 8000, Pentax W60, Pentax W80 and
FujiFilm Z33.

Table 8
SSIM and PSNR comparison on global residual-guide bias.

Datasets Without 𝐛∗ With 𝐛∗

SSIM PSNR SSIM PSNR

1128 images [17] 0.651 17.543 0.678 18.105
190 images [65] 0.872 20.491 0.876 21.983
Parameter # 7190 7292

4.5.3. Loss function
We use SSIM as a part of loss function (8) for two main reasons.

First, SSIM is calculated based on local image characteristics, e.g., lo-
cal contrast, luminance and details, which is better than the global
characteristics of 𝓁2 loss. Thus, using SSIM as the loss function is
appropriate to guide the network training. Second, the human visual
system is also sensitive to local image characteristics. SSIM has been
motivated as generating more visually pleasing results, unlike 𝓁2 loss.
We also use the average loss, i.e., Eq. (7), to intentionally guide the
top branch network and stabilize the training. We have tested various
combinations of loss functions and the results are shown in Fig. 13.
As can be seen, using our combined loss (8) can generate better local
contrast and color perception.

4.6. Robustness to different cameras

To test the robustness of our model to different cameras, we enhance
the underwater images, which contain the standard Macbeth Color
Checker, taken by various cameras [6]. As shown In Fig. 14, due to
the different cameras settings, the underwater images contain various
kinds of color distortion. While our single model is able to deal with

all distorted color and make the results have consistent color percep-
tion. This test demonstrates the robustness of our method to different
devices.

4.7. Potential applications

To verify our model could benefit other vision tasks, we perform
three applications: pre-processing for other image processing algo-
rithms, diver detection and local keypoints matching.

4.7.1. Pre-processing
Since our global–local networks are able to generate an intermediate

image, i.e.,
∧
𝐉, with compensated information, it can be combined

with other image processing algorithms as an effective pre-processing.
Fig. 15 shows examples of using different algorithms to process an
underwater image. As can be seen in the first row, due to the extreme
color distortion, both restoration-based [7] and enhancement-based
methods [71] are not able to accurately correct the distorted color.
When adding our global–local networks as a pre-processing, the defi-
ciencies in the first row are well addressed. This shows the flexibility of
our model, i.e., it allows the user to combine other mature algorithms
according to the practical needs.

4.7.2. Diver detection
Most existing deep models for high-level vision tasks are trained

using high quality images. These learned models will have degraded
performance when applied to severely degraded underwater images.
In this case, an enhanced results can be useful for these high-level
vision applications. To test whether using our model can improve the
detection performance, we analyze the performances of diver detec-
tion [72] on our enhanced images. Fig. 16 shows visual results in
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Fig. 15. Pre-processing for other image processing algorithms. The compensated result
∧
𝐉, which generated by our global–local networks, can be used as a good initial result and

benefits other image processing algorithms.

Fig. 16. Pre-processing for diver detection [72] (threshold = 0.8). Top: detection on underwater images; bottom: detection on our results.

Fig. 17. Local keypoints matching by applying the SIFT operator [73]. Compared with the underwater images, the matching results shown in our enhanced images are improved
significantly.

which the divers are not detected and the positions of the bounding
box is shift. On the contrary, using our model as pre-processing the
detection is improved by detecting divers, and having more accurate
positions of the bounding box. In Table 9, we show the quantitative
comparison results on the testing dataset [72], which contains 6K im-
ages. Two standard performance metrics, i.e., mean Average Precision

(mAP) and Intersection over Union (IoU), are used for evaluations. The
former measures the detection accuracy, while the later measures the
object localization performance. As shown in Table 9, compared to
the other methods, our algorithm achieves the best overall detection
performances. This further demonstrates that our method can benefit
downstream vision tasks.
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Fig. 18. Visual results of introducing GANs [49]. Using GANs generates sharper results.

Table 9
Comparison of diver detection on the dataset [72].

Metrics Underwater Fusion [5] Histogram [7] Haze-line [8] Blurriness [33] DL-based [50] Ours

mAP (%) 53.74 54.75 53.74 50.07 51.87 49.45 56.79
IoU (%) 60.81 61.24 60.28 58.14 58.47 55.79 63.41

4.7.3. Local keypoints matching
We also adopt local keypoints matching, which aims to find corre-

spondences between two similar scenarios, to test the effectiveness of
our method. We utilize the SIFT operator [73] for a pair of real-world
underwater images and as well for the corresponding enhanced images.
The matching results are shown in Fig. 17. It is clear that the number
of matched keypoints is significantly increased in the enhanced image
pairs. This verifies that our technique can also recover local features of
underwater images.

4.8. Discussion

Our global–local network belongs to supervised methods and pre-
dicts pixel values based on synthetic training data. On the other hand,
the generative adversarial networks [49] are able to capture data
distribution forms in an unsupervised manner. As described in the
method [74], using adversarial learning generates realistic details,
which makes the results more sharp. We test the GANs effect and
show visual results in Fig. 18. It is clear that using adversarial loss can
generate sharper results, as shown in the enlarged regions. Therefore,
using GANs may help to improve the visual quality.

Our global–local network also belongs to data-driven methods and
directly learns the relationship between inputs and desirable high
quality outputs. The physical models reflecting the underwater imaging
processes are ignored. However, our deep model can be combined
with optimization-based algorithms to take fully advantages of both
methods. For example, our global network branch can be used to
estimate the back-scattered light, i.e. 𝐀, in Eq. (1). The local network
branch can be used to estimate the transmission 𝐭. The compressed-
histogram equalization can be used to adjust the output 𝐉. Each of
the above modules can be used as regularization terms to implicitly
express the complex prior within an optimization framework. In this
way, both powerful representation ability of deep networks and prior
of physical models can be jointly exploited, which may further boost
the performance. We leave this to our future work.

5. Conclusion

In this paper, we have introduced a lightweight model for sin-
gle underwater image enhancement. Our model contains two mod-
ules, i.e., global–local networks for information compensation and

compressed-histogram equalization for further improvement. By taking
advantages of both deep learning and hand-crafted enhancement, our
model has fewer than 8K trainable parameters while still achieving
state-of-the-art performances. Due to the generality and lightweight
architecture, our networks have potential values for other vision tasks.

The goal of this work is to design an effective model for the tough
underwater image enhancement. For practical applications, the compu-
tational time can be further improved by combining out network with
more efficient network architectures [75,76]. In addition, other factors,
such as underwater imaging process and active light sources, can also
be integrated into our framework to further improve the performance.
We will incorporate above issues into our future work.
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