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Abstract. The isotropic reconstruction of 3D electron microscopy (EM)
images with low axial resolution is of great importance for biological anal-
ysis. Existing deep learning-based methods rely on handcrafted down-
scaled training data, which does not model the real degradation accu-
rately and thus leads to unsatisfying performance in practice. To address
this problem, we propose a universal and unsupervised framework to
simultaneously learn the real axial degradation and the isotropic recon-
struction of 3D EM images. First, we train a degradation network using
unpaired low-resolution (LR) and high-resolution (HR) slices, both of
which are from real data, in an adversarial manner. Then, the degra-
dation network is further used to generate realistic LR data from HR
labels to form paired training data. In this way, the generated degraded
data is consistent with the real axial degradation process, which guar-
antees the generalization ability of subsequent reconstruction networks
to the real data. Our framework has the flexibility to work with differ-
ent existing reconstruction methods. Experiments on both simulated and
real anisotropic EM images validate the superiority of our framework.

Keywords: Isotropic reconstruction · Unsupervised learning · EM
image

1 Introduction

Three dimensional electron microscopy (EM) imaging reveals biological infor-
mation at a scale of nanometer, which makes it possible for ultrastructural anal-
ysis. It is desirable to have a consistent resolution across all dimensions, both
for visualization and for biological analysis tasks. In practice, however, most
EM techniques such as serial section Transmission EM (ssTEM) and block-face
scanning EM fail to obtain the desired high axial resolution [17]. Generally, the
axial (z) resolution is of one magnitude lower compared with the lateral (x, y)
resolution. Although Focused Ion Beam Scanning EM (FIB-SEM) can achieve
8–10 nm resolution in all the x, y, z directions, it takes an unaffordable long time
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to image a large volume sample [8]. Therefore, it is of great demand to replace
the time-consuming imaging with an effective reconstruction method to obtain
high-quality isotropic 3D EM images.

To increase the resolution along the axial direction of 3D EM images, tradi-
tional interpolation methods are widely used due to their straightforward oper-
ations. Although these methods are simple and efficient, they usually result in
images with severe volume artifacts, which hinders the subsequent processing and
analysis [27]. Recently, deep learning-based methods have achieved significant
improvements on both natural images restoration [2,3,12,15,23] and biomed-
ical images analysis [5,18]. There also emerge a few works aiming to recover
isotropic EM images with the deep learning framework. As a representative,
Heinrich et al. [10] compared two 3D convolutional neural networks (CNNs),
which are trained in a supervised manner on artificially down-scaled isotropic
FIB-SEM images for 3D EM super-resolution. Their results indicate that infer-
ring high-resolution (HR) structures from low-resolution (LR) EM images is
possible. However, the isotropic ground truth images of the same category are
not always available, and these supervised 3D CNNs may not generalize well to
EM images that are drastically different from the training data in content. This
domain shift issue poses a common challenge for existing supervised CNNs-based
methods.

Along the other line, Weigert et al. [20,21] proposed a self-supervised deep
learning method to restore isotropic fluorescence volumes from anisotropic opti-
cal acquisitions, where the restoration process is modeled as a combination of a
super-resolution problem on sub-sampled data and a deconvolution problem to
counteract the microscopy induced optical point spread function (PSF). Most
importantly, they introduced the concept of self super-resolution, i.e., training
and testing on the same anisotropic volumetric data. Similar ideas have also been
explored for isotropic reconstruction of magnetic resonance images in [4,27,28].
Although self-supervised methods do not require isotropic ground truth training
data, which may cause potential domain shift issues, these methods require prior
knowledge of the PSF. In practice, however, this degradation is unknown and
could be drastically different from the handcrafted designed ones, which again
restricts the generalization ability of the above methods in real scenarios.

Theoretically, the real degradation along the axial direction can be exactly
learned by CNNs trained on realistic axial HR-LR pairs. Nevertheless, this kind
of axial HR-LR pairs are difficult to acquire, which makes supervised learning not
feasible. In this paper, inspired by unpaired learning for natural image process-
ing [1,22,29,30], we propose a framework with unsupervised degradation learning
for isotropic reconstruction of 3D EM images. Different from those methods on
2D natural images, we design our framework for the 3D volume. Specifically, our
framework contains a degradation model and a reconstruction model. To train
the degradation model, we adopt unpaired HR lateral and LR axial images from
a single, anisotropic 3D EM volume as training data. We assume that the biolog-
ical structure in the 3D volume conforms to an isotropic distribution (i.e. the cell
body is spherical). In this way, using the unpaired training strategy, the trained



Isotropic Reconstruction of 3D EM Images 165

Fig. 1. Overview of our framework. Ghl aims to generate LR image Îlj from the real HR

image Ihj ; Glh aims to restore HR image Îhi from the real LR image Ili . The generated

LR image Îlj and real LR image Ili are used to train the discriminator Dl; the generated

HR image Îhi and real HR image Ihj are used to train the discriminator Dh.

model can generate down-scaled slices that are close to those from the real axial
degradation. The generated LR images paired with original HR images are fur-
ther fed into the reconstruction model to learn the reconstruction function. This
makes our framework easy to train and can be directly applied to anisotropic
data. Thus, neither the domain shift issue in previous supervised methods nor
the mismatch of the degradation in previous self-supervised methods will exist,
which greatly improves the generalization ability of our framework in practice.
Experiments demonstrate notably improved numerical and perceptual results of
our framework over existing solutions, and a state-of-the-art neuron segmenta-
tion method is evaluated on the reconstructed isotropic volume, which further
validate the superiority of our framework on the subsequent analysis. Moreover,
the proposed framework is agnostic to the reconstruction network backbones,
and a wide range of super-resolution networks can be plugged in. Furthermore,
the proposed framework can be readily applied to isotropic reconstruction of
other 3D biomedical images.

This paper has the following contributions: 1) We propose a universal and
unsupervised framework, in which both the real axial degradation and the recon-
struction can be jointly learned, for isotropic reconstruction of 3D EM images.
2) We prove that the generalization ability of our framework can be guaranteed
since neither external training data nor degradation assumptions are needed.
3) Within our framework, users can arbitrarily choose the restoration method,
which increase the flexibility of our framework. Experiments on both simulated
and real anisotropic EM data validate the superiority of our framework.

2 Methodology

Overall Architecture. As shown in Fig. 1, our framework includes a degra-
dation model and a reconstruction model, both of which consist of a generator
and a discriminator. In the degradation model, we use unpaired HR lateral (xy)
and LR axial (xz/yz) slices from an anisotropic 3D EM volume to train the
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generator, which aims to simulate the real degradation process and generate LR
images. In the reconstruction model, the generator aims to restore HR images
from LR axial (xz/yz) slices. The two discriminators try to distinguish between
real or generated images, and the two generators try to fool the corresponding
discriminator. Therefore, the discriminators and generators are jointly trained
in an adversarial manner. In this way, the trained generator is able to capture
the true data distribution [7], which enables it to produce realistic LR images
as new training data.

Specifically, given an anisotropic 3D EM volume I, we denote the LR axial
slices as I l, and the HR lateral slices as Ih. The degradation model and the
reconstruction model learn the mappings between I l and Ih. As shown in Fig. 1,
using the jth HR image Ihj as input, the generator Ghl down-scales it into an
LR image Î lj . Similarly, using the ith LR image I li as input, the generator Glh

super-resolves it into an HR image Îhi . The generated LR image Î lj and real LR
image I li are used to train the discriminator Dl, while Îhi and Ihj are used to
train the discriminator Dh. In addition, as shown by the green and blue circles,
we also add cycle-consistent losses to force the backward mapping to bring the
generated image back to the original for stable training. At the testing phase,
only Glh is used for super-resolving I li . Since our framework is able to receive
unpaired images from different sources as training data, neither the domain
shift issue in previous supervised methods nor the mismatch of the degradation
in previous self-supervised methods will exist.

Network Implementation. The degradation model consists of the generator
Ghl and the discriminator Dl. The generator Ghl uses ResNet [9] as the backbone
structure. Specifically, we first adopt an average pooling layer to down-scale
the input resolution 10 times along the vertical (y) direction, followed by 9
residual blocks to generate the LR image. Similar to [15], we remove the batch
normalization. We set the kernel size as 3×3, and each convolution layer includes
64 filters. For the discriminator Dl, we stack 4 stride convolution layers, which
followed by Leaky ReLU activation, along the horizontal (x) direction. The kernel
size is set to 3 × 7 to adapt to the resolution of input images.

The reconstruction model consists of Glh and Dh. The generator Glh

increases the resolution of an input image 10 times along the vertical direc-
tion. To guarantee the restoration quality, universal super-resolution networks
can be used as Glh. To be simple and effective, by default, the generator Glh

contains a linear interpolation in the front of the network, and 9 residual blocks
are then used to learn the non-linear mapping for HR detail restoration. We
refer to this Default ReConstruction network as DRCNet. For the discriminator
Dh, we adopt the architecture of PatchGAN [14,30] to relieve the computation
burden.
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Loss Function. We adopt adversarial losses to guide the training of both HR
to LR mapping and LR to HR mapping. Specifically, we use a least-squares loss
[16]. For the HR to LR mapping: Ih → I l, we formulate the objective as

LGhl
= EIh

j ∼P (Ih)‖Dl(Ghl(Ihj )) − 1‖2. (1)

For the discriminator Dl, we have

LDl
= EIl

i∼P (Il)‖Dl(I li) − 1‖2 + EIh
j ∼P (Ih)‖Dl(Ghl(Ihj ))‖2. (2)

Similarly, for the LR to HR mapping: I l → Ih, we have

LGlh
= EIl

i∼P (Il)‖Dh(Glh(I li)) − 1‖2. (3)

For the discriminator Dh, we have

LDh
= EIh

j ∼P (Ih)‖Dh(Ihj ) − 1‖
2

+ EIl
i∼P (Il)‖Dh(Glh(I li))‖2. (4)

According to [30], using only adversarial losses cannot guarantee that the learned
function maps an individual input I li to the desired Ihi , thus cycle-consistent
losses are further applied. As illustrated by the green circle in Fig. 1, each real LR
image xi and generators Glh, Ghl should satisfy: I li → Glh(I li) → Ghl(Glh(I li)) ≈
I li . As shown by the blue circle, each real HR image Ihj and generators Glh, Ghl

should satisfy: Ihj → Ghl(Ihj ) → Glh(Ghl(Ihj )) ≈ Ihj . The cycle consistent loss is

Lcyc = Lcyc lr + Lcyc hr

= EIl
i∼P (Il)‖Ghl(Glh(I li) − I li‖1 + EIh

j ∼P (Ih)‖Glh(Ghl(Ihj ) − Ihj ‖1. (5)

For the two generators, we minimize the following objective

LG = αLGhl
+ βLGlh

+ ηLcyc, (6)

where α, β, η are positive values. To train discriminator Dh and Dl, we minimize

LD = LDl
+ LDh

. (7)

3 Experiments

We evaluate our framework on two popular EM data sets, FIB-25 [19] and
Cremi [11], which can be used as simulated anisotropic images and real
anisotropic images, respectively. We employ the Adam optimizer [13] with
β1 = 0.5, β2 = 0.999. The initial learning rate of generators is set to 2 × 10−4

and then decreases by a factor of 0.98 for every epoch. The discriminators are
trained with fixed learning rate of 10−4. We implement the proposed framework
with PyTorch by using a Titan XP GPU.
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Table 1. Quantitative (PSNR/SSIM) comparisons on the axial (xz/yz) slices of FIB-25
dataset. Bold is the best and italic is the second best performance. Note that ‘Cubic’ is
the ideal case where the exactly matched degradation is used for supervised training.

Method Interp DRCNet Isonet-2

Take Gau Ours Cubic Take Gau Ours Cubic

xz 25.93 22.97 25.98 26.58 26.85 22.91 25.96 26.56 26.81

0.652 0.523 0.643 0.678 0.696 0.560 0.648 0.679 0.692

yz 25.93 23.00 25.99 26.57 26.86 22.87 26.01 26.58 26.83

0.644 0.518 0.635 0.670 0.688 0.551 0.642 0.672 0.685

Fig. 2. Visual comparisons on FIB-25 dataset. Best viewed in electronic format.

Evaluation on Simulated Anisotropic Images. To investigate whether
the degradation network can learn the correct degradation process, we conduct
experiments on simulated anisotropic images. Different from most existing EM
data sets, FIB-25 [19] contains isotropic data from the drosophila brain obtained
with the FIB-SEM technique. We use a sub-volume (500 × 500 × 500) from the
FIB-25 data set for our experiments. We simulate anisotropic ssTEM images by
down-sampling the isotropic images by a factor of 10 along the axial direction
using cubic down-sample operation at first, which results in an anisotropic 3D
volume with a resolution of 500 × 500 × 50. To verify the effectiveness of our
framework, we adopt two reconstruction networks (DRCNet and Isonet-2 [20])
in the experiments. Each reconstruction network is trained in two ways: one
is trained in an unsupervised manner using our framework, and the other is
trained in a supervised manner using the lateral slices paired with their artifi-
cially down-scaled ones. For our unsupervised training, the axial (xz/yz) slices
(with a resolution of 500 × 50) and the lateral (xy) slices (with a resolution of
500 × 500) of the simulated anisotropic volume are used as training data. For
the supervised training, we generate three training data sets to represent differ-
ent kinds of degradation assumptions. Specifically, the HR ground-truth lateral
slices are down-scaled by taking every 10th row, down-scaled using the cubic
down-sample operation or firstly blur by a gaussian kernel and then down-scaled
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Table 2. Segmentation results on the
restored isotropic images. Lower is better.

Method Interp DRCNet

Take Gau Ours Cubic

VOI 5.88 6.03 5.87 4.98 5.08

Table 3. Quantitative comparisons on
stimulated degraded images.

Method Take Gau Ours

PSNR 22.68 29.35 36.55

SSIM 0.716 0.929 0.984

by taking-slice operation. Then, these three kinds of paired HR-LR data are
used to train the reconstructed network in a supervised manner. After train-
ing, the network models corresponding to different degradation processes can be
obtained. At the testing phase, for all methods, only the axial (xz/yz) slices of
the cubic down-sample simulated anisotropic volume are used as testing images.

Table 1 shows PSNR and SSIM results of the above methods. The words
‘Take’ means training on taking-slices degradation assumption, ‘Gau’ means
training on gaussian+taking-slices degradation assumption, ‘Ours’ means train-
ing with our framework, and ‘Cubic’ means training on cubic degradation
assumption (ideal case). As can been seen, our unsupervised framework achieves
comparable results with the ideal supervised method ‘Cubic’. This is because our
framework can provide training data, which conforms to the correct degradation
process, to the reconstruction network. In contrast, the performance of the net-
works trained on data with mismatched degradation assumptions, i.e., ‘Take’
and ‘Gau’, are even worse than the direct cubic interpolation. This is caused by
the degradation mismatch between training and testing data, which is a common
problem in self-supervised learning. As shown in Fig. 2, the results produced by
our framework are visually close to ‘Cubic’, which is consistent with quantitative
assessments. To prove that our framework can learn the correct degradation pro-
cess, we further calculate the PSNR/SSIM between the cubic down-sampled LR
xz/yz slices and those LR xz/yz images generated by our framework. As shown
in Table 3, our framework achieves the highest scores, which indicates that our
framework is able to generate more realistic LR images.

To validate the effectiveness of our framework in the subsequent analysis
tasks, we further conduct segmentation experiments. We use a state-of-the-art
neuron segmentation method [6]. First, we train the segmentation network on the
isotropic ground truth, and then use the trained model to evaluate on different
restored isotropic volumes. We show the results of variation of information (VOI)
in Table 2. Our framework achieves the best performance, which is even better
than ‘Cubic’ since the adversarial loss we use could benefit segmentation.

Evaluation on Real Anisotropic Images. To evaluate our framework on
real anisotropic images, we conduct experiments on the Cremi [11] dataset,
which contains EM data of drosophila brain with anisotropic resolution.
We use a volume of 1250 × 1250 × 125 for our experiments, where all the lat-
eral (xy) slices and axial (xz/yz) slices are used as training data. As shown
in Fig. 3, even when the real degradation is unknown, using our framework
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Fig. 3. Visual comparisons on Cremi dataset.

Table 4. Quantitative (PSNR/SSIM) comparisons on the lateral (xy) slices of Cremi
dataset. Bold is the best and italic is the second best performance.

Method DRCNet Isonet-1 Isonet-2 VDSR EDSR RDN RCAN Interp

Cubic 23.00 23.16 22.95 23.02 22.80 22.66 22.69 23.31
0.625

0.624 0.624 0.626 0.623 0.609 0.608 0.609

Ours 26.06 24.25 26.04 25.81 26.30 26.53 26.74

0.693 0.650 0.694 0.686 0.697 0.708 0.715

(Ours+DRCNet, Ours+Isonet-2) can still generate promising results as it learns
the real degradation. While directly using cubic interpolation fails to recover
HR details. Other two methods, Cubic+DRCNet and Cubic+IsoNet-2, which
are trained on the assumption of cubic degradation, introduce unrealistic arti-
facts. This is because the real degradation is not consistent with the artificial
one it assumes. In other words, only the learned reconstruction network with
accurate degradation modeling can generalize well to real anisotropic images.

To further validate the effectiveness of our framework, we also conduct exper-
iments on the lateral slices of Cremi dataset. Since it is difficult to acquire large
amount of isotropic images paired with its real anisotropic ones, we use our
framework to generate anisotropic images from real axial degradation. We first
generate LR images by performing the degradation network of ‘Ours+DRCNet’
that previously trained on all the lateral (xy) slices of Cremi dataset. These gen-
erated LR images are close to real data. Then, we divide these LR images into
a training set and a test set. Finally, we fine-tune our framework with different
reconstruction networks on the training set. We select above mentioned DRC-
Net, Isonet-1 [20], Isonet-2 [20] and other four deep learning-based SR methods:
VDSR [12], EDSR [15], RDN [25,26], RCAN [24]. These SR networks are trained
with and without our framework, respectively. We modify the pixel shuffle layer
to do up-sample operation in a single direction. As shown in Table 4, due to the
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degradation mismatch, using SR networks does not produce satisfactory resu-
lts. While adopting our framework improves performance, i.e., the values in the
second row are significantly higher than those in the first row. This means the
users can choose any reconstruction network according to the actual situation.

4 Conclusions

In this paper, we propose an effective framework for isotropic restoration of 3D
EM images. We achieve this goal by simultaneously learning the degradation
and reconstruction processes in an unsupervised manner. Since our framework
requires neither external paired training data nor degradation assumptions, it is
easy to implement in most practical applications. In the absence of paired data,
our framework still shows encouraging performance. Experiments have demon-
strated that even though the reconstruction network is trained with unpaired
data in our framework, its reconstruction performance is still close to the per-
formance obtained by training with pre-collected paired data.
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