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Abstract
Existing deep learning-based image de-blocking
methods use only pixel-level loss functions to guide
network training. The JPEG compression fac-
tor, which reflects the degradation degree, has
not been fully utilized. However, due to the
non-differentiability, the compression factor can-
not be directly utilized to train deep networks. To
solve this problem, we propose compression qual-
ity ranker-guided networks for this specific JPEG
artifacts removal. We first design a quality ranker
to measure the compression degree, which is highly
correlated with the JPEG quality. Based on this
differentiable ranker, we then propose one quality-
related loss and one feature matching loss to guide
de-blocking and perceptual quality optimization.
In addition, we utilize dilated convolutions to ex-
tract multi-scale features, which enables our single
model to handle multiple compression quality fac-
tors. Our method can implicitly use the information
contained in the compression factors to produce
better results. Experiments demonstrate that our
model can achieve comparable or even better per-
formance in both quantitative and qualitative mea-
surements.

1 Introduction
Lossy image compression methods, e.g. JPEG and WebP,
have been widely used in Internet information transmission
to save bandwidth, reduce storage requirements, and increase
upload and download speeds. However, due to the infor-
mation loss, complex artifacts are inevitably introduced into
compressed images, such as blocking artifacts and ringing ef-
fects [Dong et al., 2015]. These artifacts not only decrease
the visual quality, but also affect the performance of subse-
quent computer vision systems. Therefore, exploring meth-
ods to effectively reduce compression artifacts is urgently
needed. Among various compression methods, JPEG com-
pression based on the discrete cosine transform (DCT) is the
most commonly used algorithm. The image firstly is divided
∗Co-first authors contributed equally
†Corresponding author

into blocks with size of 8 × 8, and then DCT is applied on
each block. Finally, the DCT coefficients of each block are
quantized and rounded. Some high-frequency components
that contain low energy are discarded to reduce the bit rate.
Since JPEG compression applies DCT on each block, the cor-
relation between adjacent blocks is ignored, which introduces
blocking artifacts. Meanwhile, blurring and ringing effects
occur due to the quantization and rounding operations.

To cope with JPEG compression artifacts, many methods
have been proposed. In general, the existing methods can be
divided into model-based methods and learning-based meth-
ods. Previous model-based methods are mostly based on
filter design and can only solve certain types of artifacts.
For example, Pointwise SA-DCT [Foi et al., 2007] removes
blocking artifacts at the cost of introducing blurring effects.
In recent years, due to the powerful representation ability,
deep learning-based methods have been explored to directly
learn a nonlinear mapping from JPEG images to its clean
version. For example, AR-CNN [Dong et al., 2015] pro-
poses a relatively shallow network to learn the mapping func-
tion. Inspired by deep residual learning [He et al., 2016],
DnCNN [Zhang et al., 2017] proposes very deep networks
for general image restorations.

Despite the impressive progress of deep learning, there
are still some problems in this area. Firstly, most learning-
based methods use only pixel-level loss functions, e.g., mean
squared error (MSE), to optimize the model. The JPEG com-
pression factor, which reflects the degree of degradation, is
ignored. Secondly, existing methods directly use pre-trained
VGG [Johnson et al., 2016] or construct adversarial learn-
ing [Goodfellow et al., 2014] to improve perceptual quality.
However, these strategies are not designed for the specific
JPEG artifacts reduction, which leads to a poor trade-off be-
tween distortion and perception. Third, most deep learning
methods require different models to solve different compres-
sion qualities, which limits their practical values.

To address the above problems, we propose compression
quality ranker-guided networks for JPEG artifacts reduction.
The motivation of our method is that the JPEG compres-
sion factor implies the compressed image quality, which
should be fully utilized for de-blocking. To address the non-
differentiability of directly using compression quality factor,
we build a deep ranker to reflect different JPEG compression
qualities. Based on this differentiable ranker, we design one
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quality-related loss and one feature matching loss to guide the
optimization of both de-blocking and perceptual quality. By
combining the above two loss functions with mean absolute
error, the training process can be guided from both the seman-
tic level and pixel level. To enable our single model to handle
multiple JPEG qualities, we utilize the dilated convolutions to
extract multi-scale local features. These task-specific designs
allow our method to generate better de-blocking results.

In summary, the contributions of this paper are four-fold:

• We propose a general framework for JPEG artifacts re-
moval by taking compression factors into consideration.
The different compression degrees, which are ignored in
existing methods, are fully utilized to help design algo-
rithms for this specific de-blocking problem.

• We design a deep ranker to address the non-
differentiability of compression factors. Based on this
ranker, we propose two loss functions to guide the de-
blocking network training from both pixel level and se-
matic level, which leads to better de-blocking results.

• We incorporate the dilated convolutions into the resid-
ual attention block [Zhang et al., 2019b]. In this way,
multi-scale local spatial features can be fully explored to
generate rich representations, which makes it possible to
handle multiple JPEG qualities using a single model.

• Experiments demonstrate that our proposed model
reaches comparable or superior performance compared
with state-of-the-art approaches both in qualitative and
quantitative measurements.

2 Related Work
JPEG artifacts removal. Traditional JPEG artifacts re-
moval methods pay attention to filter design, e.g., Point-
wise SA-DCT [Foi et al., 2007] proposes the shape-adaptive
DCT-based filter for image denoising and de-blocking. The
method [Chang et al., 2013] utilizes sparse coding to restore
compressed images. Others treat JPEG artifacts removal as
an ill-posed inverse problem and solve it by using regres-
sion trees [Jancsary et al., 2012] and non-local self-similarity
property [Li et al., 2017]. Due to the powerful represen-
tation ability, deep convolutional neural networks (CNNs)
are utilized and explored to solve image regression prob-
lems [Liu et al., 2018]. For example, the first deep CNNs-
based method [Dong et al., 2015] designs a 4-layer fully con-
nected CNNs to learn the mapping function. DeepSD [Van-
dal et al., 2018] obtains local details information by stack-
ing CNN structures. HRFR [Zhang et al., 2018] restores
images at the feature level. Inspired by the excellent per-
formance of deep residual learning [He et al., 2016], very
deep network architectures are introduced for image restora-
tion [Zhang et al., 2017]. Inspired by the notable progress of
generative adversarial networks (GANs) [Goodfellow et al.,
2014], some methods [Guo and Chao, 2017; Zhu et al., 2018;
Wang et al., 2019] are proposed to improve the visual quality
by photo-realistic details generation. D3 [Wang et al., 2016]
builds a cascaded network in dual-domain to obtain speed and
de-blocking performance gains. In [Chen and Pock, 2017],
the authors propose a trainable nonlinear reaction diffusion

model for image restoration. Recently, the method [Fan et al.,
2018] proposes a decoupled learning framework to combine
different parameterized operators. DCSC [Fu et al., 2019]
introduces a more compact and explainable deep sparse cod-
ing architecture to generate high-quality de-blocking results.
RNAN [Zhang et al., 2019b] designs residual non-local at-
tention networks for general image restoration, such as image
super-resolution and JPEG artifacts removal.
Ranker for image processing. Image quality ranker has
proven useful for image processing. RankCGAN [Saquil et
al., 2018] designs a Siamese-network-based ranker to han-
dle continuous attribute values for the task of image gener-
ation with semantic attributes. RankSRGAN [Zhang et al.,
2019a] proposes a rank approach to generate the relative nat-
ural image quality evaluator (NIQE) value for image super-
resolution. However, these methods design image quality
ranker to generate subjective visually pleasing results. While
our method aims to design a differentiable ranker related to
various JPEG compression factors. This ranker, which fits
this specific JPEG artifacts removal problem, can better guide
the subsequent de-blocking network training.

3 Methodology
Our proposed framework consists of two components: com-
pression quality ranker (CQR) and de-blocking network,
whose architectures are depicted in Figures 1 and 2, respec-
tively. Our model is trained in two steps: first, to utilize
non-differentiable compression quality information, we train
a differentiable compression-quality-based ranker network to
predict scores related to compression quality factors. The
CQR is a Siamese network with pair-wise inputs, which have
same content but different compression degrees, shown in
Figure 1. Second, based on the previous CQR, we design the
specific quality-related loss and feature matching loss to train
the de-blocking network for JPEG artifacts removal. The de-
blocking network training strategy is shown in Figure 2. Be-
low we will detail the architecture, training strategy and loss
functions.

3.1 Compression Quality Ranker
Network architecture. The architecture of the CQR is de-
picted in Figure 1. Inspired by the methods [Saquil et al.,
2018; Zhang et al., 2019a], we use a Siamese network to pre-
dict the relative scores of compression quality factors. Specif-
ically, this network contains two same branches that share
weights and each branch is composed of convolutional lay-
ers, batch normalization, Leaky ReLU, global average pool-
ing and fully connected layers. To update parameters, we
send the output scores to the margin loss module to learn the
compression-quality ranking order of the pair-wise input im-
ages, whose compression quality factors are different. The
preparation of the pair-wise input images and the optimiza-
tion loss function of CQR are described below.
Compression quality paired images. First, the clean im-
age is compressed by setting different JPEG-compression
quality factors (QF), which range from a to b. Note that
a lower QF indicates a higher compression degree, which
results in poorer image quality and more obvious artifacts.
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Figure 1: Step1: Training Compression Quality Ranker (CQR). During training, the ranker is a Siamese network with paired images of
different compression factors as inputs. The Margin ranking loss, i.e., Eq. (2) is used to constrain the output score, so that the size relationship
between the scores is consistent with the size relationship between quality factors. Since the ranker is differentiable, the output scores that
highly related to compression quality factors can be used to optimize the subsequent de-blocking network.

Figure 2: Step2: Training De-blocking Network. Based on the CQR (blue box), we train the de-blocking network (purple box). The de-
blocking network is composed of dilated non-local blocks and dilated local blocks. Dilated non-local block consists of residual blocks,
non-local mask module and dilated convolutions. By applying different dilated factors, dilated convolutions can extract multi-scale features.
Therefore, the single network is able to handle multiple compression qualities. During training, we fix the network parameters of the well-
trained CQR. Then we use the combined loss, i.e., Eq. (6), to train the de-blocking network.

Then, we divide the range of QF into n levels, and their corre-
sponding labels are set to 1, 2, · · · , n. For example, the image
with [a, a + (b − a)/n] range of QF is labeled as “1”. Obvi-
ously, a higher label reflects a better image quality. During
the training procedure, we randomly select two compressed
images which have same content but different labels as the
pair-wise input images to optimize the ranker.
Margin ranking loss. After obtaining the paired input im-
ages, the CQR predicts their two scores respectively:

si = CQR(xi),

sj = CQR(xj), (1)

where si and sj represent the output scores of image xi and
image xj , respectively. To train the ranker CQR(·), we adopt
margin ranking loss as the optimization loss function, which
is commonly used in ranking problems [Zhang et al., 2019a]
and can be expressed as:

LM = max {0, (si − sj) ∗ η + ε} ,{
η = 1, if bi < bj
η = −1, if bi > bj

, (2)

where bi and bj represent the labels of image xi and image
xj , respectively. Obviously, if the relationship between si
and sj is consistent with the relationship between bi and bj ,
the loss equals 0. Based on the well-trained CQR, a higher
output score indicates a higher image quality.

3.2 De-blocking Network
Network architecture. The architecture of the de-blocking
network is shown in the purple box in Figure 2. As can
be seen, the network consists of two basic blocks, i.e., di-
lated non-local block and dilated local block. Inspired by
RNAN [Zhang et al., 2019b], we directly quote its non-local
mask module to extract global context information. The dif-
ference between these two blocks is that the non-local oper-
ation is utilized in dilated non-local blocks to generate the
mask map. Therefore, we mainly introduce the dilated non-
local block. It consists of dilated convolutions and residual
blocks with the skip connection operation. The residual block
is composed of convolutional layer and ReLU. Then we de-
scribe the multi-scale dilated convolutions. RNAN [Zhang
et al., 2019b] and other methods [Zhang et al., 2017; Fan et
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al., 2018] mostly need to train individual models for differ-
ent compression quality factors, which limits their practical
values. To handle this obstacle, we introduce dilated convo-
lutions to extract multi-scale features. As shown in Figure 2,
different dilated factors (DF) can expand the filter to different
scales and increase receptive fields. By using concatenation
operation, we can obtain multi-scale representations, which
allows a single model to achieve the ability to solve the mul-
tiple compression quality issue. Additionally, the dilated con-
volutions bring no extra parameters.
Training strategy. The training strategy of the de-blocking
network is depicted in Figure 2.As mentioned above, the out-
put score of well-trained CQR can effectively represent the
compression quality. Therefore, we use the scores to guide
the training of de-blocking network. Firstly, the compressed
image is processed by de-blocking network to generate the
de-blocked image. This de-blocked image and the corre-
sponding ground truth are used to formulate mean absolute
error, which represents pixel-level information. Secondly, the
de-blocked image and ground truth are sent into well-trained
CQR. The CQR output score of de-blocked image formulates
quality-related loss, which measures the quality degree of de-
blocked image. Additionally, we introduce feature match-
ing loss to measure the feature-level similarity between de-
blocked image and ground truth. Due to the three loss func-
tions and dilated convolutions, the network can be efficiently
optimized both in quantitative and qualitative measurements,
and the single model can handle multiple compression quali-
ties. The specific loss functions are described below.

3.3 Loss Functions
MAE loss. In this paper, we use mean absolute error to con-
strain the pixel-level similarity. MAE loss is expressed as:

LMAE = ‖M(x)− y‖1 , (3)

where x and y represent the compressed image and ground
truth, respectively. M (·) represents the mapping function of
de-blocking network.
Quality-related loss. As mentioned above, the larger score
output by the well-trained CQR indicates a better image qual-
ity. Therefore, we can utilize CQR to measure the quality
of the de-blocked image. Since the proposed ranker can be
seen as a classification process, which is the most fundamen-
tal semantic-related vision task [Liu et al., 2019], it is able to
provide semantic-level information to guide the de-blocking
network training. This loss can be presented as:

LQ = sigmoid(−CQR(M(x))), (4)

where CQR(M(x)) is the score of the de-blocked image
M(x). To formulate a loss function, we take the negative
value of the score, and perform a sigmoid operation to make
the loss range from 0 to 1.
Feature matching loss. Perceptual loss is widely applied in
various image restoration tasks using a pre-trained VGG net-
work [Simonyan and Zisserman, 2014]. However, the VGG
model is not trained to remove JPEG artifacts. Therefore, it
cannot provide the JPEG artifacts-related features well. Un-
like the traditional perceptual loss, our feature matching loss

is formulated by several feature maps extracted from CQR,
which can more accurately reflect JPEG artifacts information.
Feature matching loss can be presented as:

LF = E

[∑
i

1

Ni

∥∥∥CQR(i)(M(x))− CQR(i)(y)
∥∥∥
1

]
, (5)

where CQR(i) (·) represents the feature map extracted from
the ith layer of CQR, and Ni is the element number.
Overall loss. The above three loss functions constitute the
overall loss to train the de-blocking network:

L = LMAE + αLQ + βLF , (6)
where α and β are used to balance different loss functions.

4 Experiments
4.1 Experimental Datasets and Settings
Datasets. In our experiments, we use four datasets:
DIV2K [Agustsson and Timofte, 2017], BSDS500 [Arbelaez
et al., 2010], LIVE1 [Sheikh, 2005] and Classic5 [Zeyde et
al., 2010]. The DIV2K dataset (800 images) is used for train-
ing, while the other three datasets are used for testing. As
mentioned above, our model is trained in a stage-wise fash-
ion: first CQR is trained and frozen, and then the de-blocking
network is optimized. Note that the whole procedure is only
implemented on the Y channel image of YCrCb space. The
specific settings of training and testing are described below.
Training settings of CQR. To obtain pair-wise input im-
ages for CQR, we use the standard JPEG compression
scheme to obtain compressed images with different JPEG
quality factors. The factors range from 1 to 30 and we divide
the range into 3 levels to label compressed images. Specif-
ically, the images within range [1, 10], [11, 20], and [21, 30]
are labeled as 1, 2 and 3, respectively. Then, we randomly
select two compressed images with the same content but dif-
ferent labels to form a pair-wise training data.
Training settings of de-blocking network. We generate
the compressed images by using three JPEG quality factors,
which are 10, 20 and 30. Then, for each ground truth image,
there are 3 corresponding compressed images with different
quality factors. Other methods mostly use 3 quality factors to
train 3 models, and each model can only handle specific qual-
ity factor. As mentioned above, our single model is able to
handle multiple JPEG qualities. Thus, we use all the 3 qual-
ity factors to train our de-blocking network. The parameters
α and β are empirically set as 0.01 and 0.9, respectively.
Testing settings of de-blocking network. We use the same
compression operation on BSDS500 (500 images), LIVE1
(29 images) and Classic5 (5 images). They are compressed
with 3 quality factors: 10, 20 and 30. We use these com-
pressed images to evaluate the performance of our model both
in different datasets and in different quality factors.

4.2 Experimental Details
Evaluation metrics. For quantitative assessment, we use
PSNR, structural similarity (SSIM) and PSNR-B [Yim and
Bovik, 2010] to evaluate de-blocking performance. Note that
the PSNR-B is specifically designed and more sensitive to
blocking artifacts than SSIM.
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Quality w/o CQR w/o DC w/o LQ w/o LF Ours

10 29.21|0.801|28.81 29.38|0.792|28.92 29.41|0.802|28.98 29.32|0.780|28.90 29.42|0.807|29.01
20 31.41|0.827|30.89 30.77|0.799|30.12 31.87|0.851|31.23 31.71|0.809|31.13 31.97|0.865|31.29
30 32.77|0.889|31.90 31.19|0.832|30.27 32.79|0.890|31.90 32.26|0.861|31.39 32.91|0.891|31.98

Table 1: Quantitative Ablation Study on PSNR|SSIM|PSNR-B Values. We evaluate the effect of the components. “Ours” means all 4
components are used. The dataset used in this experiment is BSDS500. The best results are boldfaced.

Figure 3: Qualitative Ablation Study. We evaluate the visual effect of the components. “Ours” means all 4 components are used. The testing
images is from LIVE1 dataset with JPEG quality factor 10.

Figure 4: Visualization of the feature maps output by our ranker. As can be seen, our ranker has a low response to the clean image and high
responses to JPEG compressed images. We enlarge the feature maps to make them correspond to the spatial position of the images.

Implementation details. As for the network architecture,
the compression quality ranker (CQR) utilizes the VGG net-
work [Simonyan and Zisserman, 2014], which includes 10
convolutional layers. The specific dilated factors are set to 1,
2 and 4. The ε in margin ranking loss is set to 0.5. For opti-
mizations, we use Adam optimizer [Kingma and Ba, 2014] to
train our model. The learning rate is initialized to 10−4 and
decreased to half every 1× 105 iterations. We implement the
proposed model with two Titan Xp GPUs by using PyTorch.

4.3 Ablation Study
Our model contains 4 important components: Compression
Quality Ranker (CQR), dilated convolutions (DC), quality-
related loss (LQ) and feature matching loss (LF ), which al-
low our model to achieve promising performance both in
qualitative and quantitative evaluation. We perform ablation
experiments on the above 4 components to analyze their ef-
fects, which are shown in the Table 1 and Figure 3.
Effect of Compression Quality Ranker. Obviously, when
removing the CQR module, LQ and LF no longer exist. As
shown in the Table 1, the PSNR-B of ”w/o CQR” decreases
0.20 at q = 10, but only decreases 0.08 at q = 30, which
indicates that, by introducing compression quality informa-
tion, CQR can guide the network to effectively remove severe
compression artifacts.
Effect of dilated convolutions. As shown in Table 1, when
removing DC, the network recovers better at q = 10, but fails

to achieve good performance at q = 20 and 30. Without
DC, the multi-scale context information cannot be extracted,
thus the details of the images are difficult to be recovered.
The “w/o DC” can only extract single-scale features, which
cannot be used to handle multiple compression qualities.
Effect of quality-related loss. In Table 1, the PSNR-B met-
ric of ”w/o LQ” is 0.03, 0.06, 0.08 lower than ours at all the
three qualities, which indicates that LQ can improve network
performance. To prove that our ranker is able to discrimi-
nate different quality factors, we visualize the learned feature
maps in Figure 4. Obviously, our ranker has a low response
to the clean image and high responses to JPEG compressed
images, especially in the area where artifacts are noticeable.
Additionally, for different quality factors, the ranker gener-
ates different feature maps, which can provide discrimina-
tive information to guide the subsequent de-blocking network
training.
Effect of feature matching loss. When LF is removed, the
visual quality metric SSIM drops heavily, due to the feature-
level constraint disappears. The network cannot be effec-
tively optimized at the visual level. In addition, the PSNR
and PSNR-B also decreased, which indicates that LF reflects
more valuable information compared with LQ.

4.4 Comparison with the State-of-the-Art Methods
We compare our method with state-of-the-art LD [Li et al.,
2014], ARCNN [Dong et al., 2015], TNRD [Chen and Pock,
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Dataset Quality LD [2014] ARCNN [2015] TNRD [2017] DnCNN [2017] LPIO [2018] RNAN [2019b] Ours

10 28.39|0.800|27.59 29.03|0.793|28.78 29.28|0.799|29.04 29.40|0.803|29.10 29.35|0.801|29.04 29.94|0.809| 29.67 29.92|0.837|29.71
Classic5 20 30.30|0.858|29.98 31.15|0.852|30.60 31.47|0.858|31.05 31.63|0.861|31.19 31.58|0.856|31.12 32.14|0.863|31.78 32.89|0.886|32.41

30 31.50|0.882|31.31 32.51|0.881|32.00 32.78|0.884|32.24 32.91|0.886|32.36 32.86|0.883|32.28 33.38|0.890|32.81 33.31|0.893|32.97
10 28.26|0.805|27.68 28.96|0.808|28.77 29.15|0.811|28.88 29.19|0.812|28.91 29.17|0.811|28.89 29.60|0.819|29.26 29.81|0.810|29.59

LIVE1 20 30.19|0.871|30.08 31.29|0.873|30.79 31.46|0.877|31.04 31.59|0.880|31.08 31.52|0.876|31.07 32.11|0.876|31.74 32.04|0.891|31.77
30 31.32|0.898|31.27 32.67|0.904|32.22 32.84|0.906|32.28 32.98|0.909|32.35 32.99|0.907|32.31 33.43|0.907|32.69 33.57|0.912|32.81
10 28.03|0.782|27.29 28.56|0.783|28.54 28.42|0.781|28.30 28.84|0.783|28.44 28.81|0.781|28.39 29.15|0.787|28.89 29.41|0.801|29.03

BSDS500 20 29.82|0.851|29.57 30.42|0.852|30.39 30.35|0.854|30.16 31.05|0.857|30.29 30.92|0.855|30.07 31.37|0.861|30.76 31.87|0.868|31.08
30 30.89|0.883|30.83 31.51|0.884|31.47 31.36|0.887|31.12 32.36|0.891|31.43 32.31|0.886|31.27 32.79|0.890|31.90 32.91|0.901|32.00

Table 2: Quantitative comparisons on PSNR|SSIM|PSNR-B values. The best results are boldfaced. Note that, unlike other methods, our
method trains single model to handle different quality factors.

Figure 5: Qualitative comparison on the state-of-the-art methods. The testing image is from Classic5 dataset with JPEG quality factor 10.

Figure 6: Qualitative Comparison on the state-of-the-art methods. The testing image is from LIVE1 dataset with JPEG quality factor 20.

2017], DnCNN [Zhang et al., 2017], LPIO [Fan et al., 2018]
and RNAN [Zhang et al., 2019b]. As shown in Table 2, Fig-
ures 5 and 6, our model achieves comparable or superior per-
formance both in qualitative and quantitative measurements.

Quantitative evaluation. As shown in Table 2, we show
PSNR, SSIM and PSNR-B values to evaluation our proposed
model with other methods. As we can see, compared with
other methods, our method achieves the best overall perfor-
mance in all the three metrics. Since the PSNR-B is specifi-
cally designed for de-blocking problems, the higher PSNB-B
of our method indicates our model is more suitable for this
JPEG artifacts removal task.

Qualitative evaluation. As shown in Figures 5 and 6, our
model is able to simultaneously achieve compression artifacts
removal and details restoration. Specifically, in smooth areas,
blocking artifacts are well removed. Moreover, in the areas
with complex textures, such as the edge in Figure 5 and the
lines in Figure 6, our de-blocked images contain more fluent
edges and no additional blurring or ringing effects are intro-
duced. Especially, in Figure 6, the lines are very close to the
ground truth.

5 Conclusion
In this paper, we propose compression quality ranker-guided
networks for JPEG artifacts removal. Specifically, a compres-
sion quality ranker is introduced to measure different com-
pression degrees. Based on the differentiable ranker, we then
design quality-related loss and feature matching loss to guide
de-blocking network optimization. Additionally, dilated con-
volutions are introduced to extract multi-scale features, which
allows our single model to handle multiple JPEG qualities.
Experiments show that our method achieves satisfactory per-
formance in both qualitative and quantitative quality.
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