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Abstract— In the classification of hyperspectral image (HSI),
there exists a common issue that the collected HSI data set is
always contaminated by various noise (e.g., Gaussian, stripe,
and deadline), degrading the classification results. To tackle
this issue, we modify the 3-dimensional discrete wavelet trans-
form (3DDWT) method by considering the noise effect on
feature quality and propose an enhanced 3DDWT (E-3DDWT)
approach to extract the feature and meanwhile alleviate the
noise. Specifically, the proposed E-3DDWT method first applies
classical 3DDWT method to the HSI data cube and thus can
generate eight subcubes in each level. Then, the stripe noise
is concentrated into several subcubes due to its spatial vertical
property. Finally, we abandon these subcubes and obtain the
feature cube by stacking the remaining ones. After acquiring the
feature, we then adopt the convolutional neural network (CNN)
model with an active learning strategy for classification since
CNN has been verified to be a state-of-the-art feature extraction
method for HSI classification, and active learning strategy can
alleviate the insufficient labeled sample issue to some extent.
In addition, we apply the Markov random field to enhance
the final categorized results. Experiments on two synthetically
striped data sets show that our proposed approach achieves better
categorized results than other advanced methods.

Index Terms— Classification, hyperspectral image (HSI), noise,
wavelet transform.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is a main data-type
of remote sensing field, and can offer sufficient

spatial–spectral information on some specific objective [1]–[3],
which boosts the extensive research on HSI classification
task in various applications [4]–[7]. For the past decade,
researchers have proposed a ton of classification algorithms,
which mainly revolve around extracting spatial–spectral fea-
tures, such as patch-based methods [8]–[13], wavelet transform
methods [14]–[16], and deep learning methods [17]–[20]. For
a more comprehensive review, we can refer to [21].
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Fig. 1. Illustrated example of feature quality being affected by noise.
(a) False-color image. (b) Clean image (band 10). (c) Noisy image (band 10).
(d) Ground-truth map. (e) Classification map of (b) by 3DDWT. (f) Classifi-
cation map of (c) by 3DDWT.

Although these methods achieve a good classification per-
formance, they intend to be easily affected by the noise
(e.g., Gaussian, stripe, and deadline noise). To illustrate this
phenomenon, we provide an example in Fig. 1, from which
we can observe a significant decline of classification overall
accuracy (OA; from 73.41% to 60.45%) when the HSIs are
contaminated by the stripe noise. This is principally because
noise can destroy the image content and thus affect the
feature quality. To alleviate this issue, a traditional way is to
remove the noise first and then extract the feature. This letter
proposes an alternative approach to simultaneously alleviate
stripe noise and extract feature. This approach is built on
the 3-dimensional discrete wavelet transform (3DDWT) [14]
and thus is called enhanced 3DDWT (E-3DDWT). More
specifically, the E-3DDWT method consists of the following
steps. First, we adopt the traditional 3DDWT approach to
decompose the HSI data cube, and thus obtain eight subcubes
in each level. Then, we can observe that the stripe noise
mainly concentrates in a few subcubes [22] (see Fig. 2) due
to its spatial vertical orientation property. Finally, we discard
these subcubes and get the final feature cube by stacking the
remaining ones. In this way, we can mitigate the effect of noise
on the feature quality to some extent.

However, the dimension of the extracted feature is very high
(equals (5L + 1)d , where L is level number and d is the
original spectral dimension) while the number of annotated
samples is often small, which poses a high dimension and
small sample problem. To alleviate the issue, we resort to the
convolutional neural network (CNN) classifier for two reasons.
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Fig. 2. L th level of the proposed enhanced 3DDWT method.

Fig. 3. Proposed framework for HSI classification.

First, to make the extracted features be more discriminative,
we need to further exploit the spectral–spatial information
of HSI in the classification stage while the CNN classifier
is capable of extracting such knowledge. Second, the first
convolutional layer of the CNN can reduce the dimension
of the extracted E-3DDWT feature from D = (5L + 1)d to
20 (e.g., the number of convolution filter is 20). In addition,
to mitigate the insufficient labeled sample issue, we utilize the
active learning technique in our CNN model. We also adopt
the Markov random field (MRF), which assumes neighboring
pixels to have the same label with a great probability, to help
improve the final classification result.

On the whole, we propose an approach for HSI classification
based on the proposed E-3DDWT feature extraction method.
Specifically, this article has the following contributions.

1) We propose a novel E-3DDWT approach to mitigate
stripe noise while extract the spatial–spectral feature
simultaneously, which is the main novelty of this article.

2) We apply the CNN and active learning strategy to the
feature cube to alleviate the high dimension problem and
small samples problem, separately. Moreover, we utilize
the smooth prior of the HSI labels and construct a MRF
model to enhance the categorized results.

3) Experiments on two synthetically striped HSI data sets
demonstrated that our approach is capable of getting bet-
ter categorized results than the state-of-the-art methods.

II. OUR METHOD

A. Notations

The HSI data are denoted as H ∈ R
h × w × d , where h is spa-

tial height, w is spatial width, and d is spectral dimension. The
feature cube extracted by E-3DDWT method is represented as

C ∈ R
h ×w × D , where D = [(7L +1)−2L]d = (5L +1)d and

L is the level number. L = {(ci , yi)}n
i=1 is the labeled set and

U = {ci}N
i=n+1 denotes the unlabeled set, where n represents

the labeled sample number, N (equals hw) is the total number,
ci ∈ R

D is the i th sample feature, and yi ∈ {1, 2, . . . , K } is the
corresponding label. For each ci , the input to the CNN model
is its local patch cube denoted as xi ∈ R

k × k × D , and thus the
real training set for the CNN model is D = {(xi , yi)}n

i=1. All
the labels of the HSI are represented as Y = {yi}N

i=1.

B. Model

In Fig. 3, we present the framework of our method.
Specifically, an enhanced 3DDWT (E-3DDWT) method is
first proposed to alleviate the effect of stripe noise on the
feature extraction. Then, the extracted feature cube is used
for classification with a CNN model and active learning
strategy. Finally, we conduct a postprocessing operation on the
classification map based on the MRF model. In the following,
each step of this method will be presented in detail.

1) E-3DDWT: 3DDWT is a powerful tool and has been
used in various HSI applications, such as classification [14]
and denoising [22]. However, the feature quality of HSI can
be always contaminated by the noise, which will degrade the
subsequent classification performance. A traditional way to
mitigate the effect of stripe noise on the feature is to denoise
first and then conduct feature extraction. Different from the
traditional method, this article proposes another way where
alleviating the noise and extracting the feature are done simul-
taneously. In this article, we propose an enhanced 3DDWT (E-
3DDWT) feature extraction method shown in Fig. 2 based on
this new way. More specifically, we adopt the dyadic decompo-
sition due to its simplicity of implementation, whose one-level
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Fig. 4. Architecture of CNN [23]. The HSI patch size is 8 × 8 × D. The
size of convolutional kernel in the first convolutional layer is 3 × 3 × D and
the number of filter is 20. The size of convolutional kernel in the second
convolutional layer is 2×2×20 and the number of filter is also 20. After
convolution, a max-pooling layer with kernel size 2 × 2 and a stride of
two pixels is adopted. Finally, two fully connected layers with 500 units and
K units are used.

decomposition is illustrated in Fig. 2. From Fig. 2, we can
see that a low-pass filter (LF) and a high-pass filter (HF) are
used in the width, height, and spectral directions, respectively.
In our work, we adopt the Haar wavelet. By conducting this
decomposition, we can obtain eight subcubes (e.g., Tl

L L L ,
Tl

L L H , Tl
L H L , Tl

L H H , Tl
H L L, Tl

H L H , Tl
H H L, Tl

H H H ). Since it
has been verified in the work that stripe noise mainly appears
on the subcubes with a vertical spatial orientation, namely,
Tl

H L L and Tl
H L H (shown in the red dotted box of Fig. 2),

we discard these two subcubes in the process of decom-
position and thus can alleviate the stripe noise to some
extent. In summary, this is the main difference between the
E-3DDWT method and the 3DDWT method. Furthermore,
to implement the multilevel decomposition, the approximated
baseband Tl

H H H can be recursively decomposed. By stacking
the remaining subcubes, we can get the final feature cube
C ∈ R

h ×w × (5L+1)d , where L is the level of decomposition.
2) CNN Model With Active Learning: After obtaining the

feature cube C by the E-3DDWT method, we can observe that
the feature dimension is very high while the labeled sample
number is small, which causes a typical high-dimension and
small samples problem. To alleviate the high dimension issue,
we adopt the CNN model (shown in Fig. 4) since it can reduce
the feature dimension (e.g., the number of convolution filter is
set as 20) in the process of feature extraction while still attains
a good spatial–spectral feature. Specifically, the loss function
(namely, negative log-likelihood) of the CNN model is

L(�|D) = −
n∑

i=1

K∑
k=1

1{yi =k}log P(yi =k|xi ,�) (1)

where 1{·} is the indicator function defined as: 1{true} = 1
and 1{ f alse} = 0, � denotes the parameter set of CNN, and
P(yi =k|xi ,�) represents the probability of xi to take label k,
which is defined as the output of the CNN.

Furthermore, to mitigate the small sample issue, we resort
to the active learning strategy. This strategy can select the most
uncertain samples, which help accelerate the CNN training and
reduce the number of required label samples. For the choice of
active selection criterion, we adopt the best-versus-second best
(BvSB) [24], which describes the confusing extent of current
model on one unlabeled sample in the candidate pool and can
be computed as the difference between the biggest element
and the second biggest element of the class probability vector
[namely, P(yi = k|xi,�)]. Therefore, the samples with higher
BvSB values will be selected preferentially.

3) MRF Postprocessing: After completing the testing phase
using the trained CNN, we further consider the smooth prior
of the image label, which enforces neighboring pixels to share

the same label with a high probability [14], [25]. Specifically,
the objective function is

L(Y ) = −
N∑

i=1

K∑
k=1

1{yi = k} log P(yi = k|xi ,�)

+ λ

N∑
i=1

∑
j∈Ni

[1 − δ(yi , y j)] exp

(
−||ci − c j ||22

2σ

)
(2)

where λ ≥ 0 represents smooth parameter, Ni denotes the
surrounding pixels of the i th pixel, δ(�) is the Kronecker
function defined as: δ(a, b) = 1 for a = b and δ(a, b) = 0
otherwise, and σ > 0 denotes scale parameter. The smooth
prior of the labels is mainly reflected in the second term of (2),
whose minimization can result in neighboring pixels taking the
same label value. Although minimizing L(Y ) is an NP-hard
problem, L(Y ) is converted into a MRF model [18], [25] and
then solved by belief propagation algorithm [26].

III. EXPERIMENTS

A. Data Sets

Two data sets1 [12], [14] are used to assess our
approach. The first one is collected using the AVIRIS sensor
and is called Indian Pines, whose size is 145 × 145 ×200.
The second one is Pavia University, whose size is 610×
340 × 103. Before adding the stripe noise to the two data
sets, each data set is first normalized into the range [0–1].
Then, we randomly add stripe noise with the range [−0.3 to
0.3] to 70 columns of each band for both data sets, and obtain
the HSI data sets with stripe noise. A sample image is shown
in Fig. 1(c).

B. Experimental Settings and Parameter Settings

Three experimental settings are shown as follows.
1) Ablation Study: This experiment aims to assess the

performance of each module in our method, such as
E-3DDWT feature, CNN classifier with active learn-
ing (CNN-AL), and MRF. Specifically, for the fea-
ture, we compare the proposed E-3DDWT feature with
original data and 3DDWT feature. For the classifier,
we compare the CNN-AL with support vector machine
(SVM) and CNN. For the postprocessing, we compare
the method with MRF and without MRF. For fair com-
parison, when one module is being verified, the other
ones should be fixed. Specifically, the Indian Pines
data are used for this experiment. The training set is
constructed by randomly choosing 5% of the samples
from each class.

2) Comparison With the State-of-the-Art Methods: We
assess our approach on two synthetically striped HSI
data sets in comparison with eight advanced approaches,
such as low-rank (LR) decomposition method [8],
3-dimensional Gabor wavelet (3DGW) [15], orthogonal
total variation component analysis (OTVCA) [27], joint
progressive learning (JPlay) [28], local block multilayer
sparse extreme learning machine (LBMS-ELM) [12],
stacked auto-encoder (SAE) [17], 3-D-CNN [20], and
CNN with MRF (CNN-MRF) [18]. In addition, the train-
ing sets of Indian Pines data set are constructed by

1The two data sets are available at: http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes.
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TABLE I

MEAN OA (%) WITH DIFFERENT FEATURES

TABLE II

MEAN OA (%) WITH DIFFERENT CLASSIFIERS

TABLE III

MEAN OA (%) WITH/WITHOUT MRF

randomly selecting 5% and 3% of the samples in each
class, while the training sets of Pavia University are built
by randomly choosing 1% and 0.75% of the samples
from each class.

3) Comparison With Traditional Pipeline: This experiment
aims to compare the performance of the two pipelines,
namely, 1) first denoising and then extracting feature
using 3DDWT method and 2) simultaneously extract-
ing feature and denoising (using E-3DDWT method).
Traditional methods belong to the first pipeline and
ours belongs to the second one. This experiment is
conducted on two data sets, and the training sets are
built as follows: randomly selecting 5% and 1% samples
from each class for Indian Pines and Pavia University,
respectively. For the first pipeline, we use two state-
of-the-art mixed noise removal methods, namely, non-
independent identically distributed Mixture of Gaussian
(NMoG) [29] and mixed Gaussian and sparse noise
reduction (MGSNR) [22] as the destriping approaches.

The parameter settings of our method are shown in the
following. The number of decomposition level L is fixed as 1
since the offline experiment implies that the classification per-
formance decreases as the level number increases. In addition,
we follow the settings of the article [23] to select the round
number, the epochs in each round, and the number of added
samples in each round for the active learning strategy. Also,
as suggested by Cao et al. [23], the smooth parameter λ is set
as 5. All the experiments are repeated five times, and mean
results are reported.

C. Experimental Result Analysis

1) Ablation Study: The results of this experiment are
demonstrated in Tables I–III. First, it can be observed from
Table I that the 3DDWT feature is more discriminative than the
original data, which is reasonable since the 3DDWT method
is capable of fully utilizing the spatial–spectral information.
In addition, we can also see that the E-3DDWT feature
outperforms the 3DDWT feature. This is because E-3DDWT
can mitigate the stripe noise, whereas it extracts the feature
and thus obtains better features than 3DDWT. From Table II,
we can first see that the CNN outperforms SVM. Also,
it can be found that CNN-AL obtains the best classification
performance since more uncertain and informative samples
are selected for training, thus helping to train the CNN in a
better way. Finally, the utilization of MRF can enhance the
categorized results due to the consideration of the smooth
prior of labels, which can be seen in Table III. In summary,
this experiment verifies that each module of our method can
achieve performance gain.

TABLE IV

CLASSIFICATION RESULTS (%) FOR INDIAN PINES

TABLE V

CLASSIFICATION RESULTS (%) FOR PAVIA UNIVERSITY

Fig. 5. Visual classification maps of Indian Pines data set.

Fig. 6. Visual classification maps of Pavia University data set.

2) Comparison With the State-of-the-Art Methods: The
average categorized results are demonstrated in
Tables IV and V, and the final visual classification maps
are illustrated in Figs. 5 and 6. From Tables IV and V,
we can observe that our approach outperforms the competing
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TABLE VI

MEAN OA (%) WITH DIFFERENT PIPELINES

approaches on both data sets. This is mainly because our
method alleviates the noise in the feature extraction process
and thus gets better features than the traditional methods (e.g.,
LR, 3DGW, OTVCA, JPlay, and LBMS-ELM). In addition,
the factors, based on which the proposed method performs
better than the three deep learning methods (e.g., SAE,
3-D-CNN, and CNN-MRF), are attributed to not only the
noise compression while conducting feature extraction but
also the utilization of active learning strategy, which can
help select more uncertain and informative samples for the
training. By comparing the visual classification results from
Figs. 5 and 6, we can see that our method has a more precise
classification map. In addition, the average running time is
also reported in Tables IV and V.

3) Comparison With Traditional Pipeline: From the results
recorded in Table VI, we can observe that our approach obtains
comparable classification results compared with the traditional
pipeline, which further verifies that our method provides a
comparable pipeline with the current popular one. Therefore,
this result implies that more research along this proposed
pipeline can be conducted in the future.

IV. CONCLUSION

This letter proposes a novel enhanced 3DDWT approach
to simultaneously extract the feature and alleviate the stripe
noise. The extracted feature has higher quality than those
methods which do not consider the noise effect. Moreover,
we adopt a CNN model with an active learning strategy and
MRF in the classification stage, which can alleviate the small
samples issue and also improve some performance to some
extent. Experimental results confirm that our approach has
an advantage over the state-of-the-art methods in extracting
features from a noisy HSI data set.
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