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Abstract

Person re-identification (Re-ID) in real-world scenarios

usually suffers from various degradation factors, e.g., low-

resolution, weak illumination, blurring and adverse weath-

er. On the one hand, these degradations lead to severe dis-

criminative information loss, which significantly obstruct-

s identity representation learning; on the other hand, the

feature mismatch problem caused by low-level visual vari-

ations greatly reduces retrieval performance. An intuitive

solution to this problem is to utilize low-level image restora-

tion methods to improve the image quality. However, exist-

ing restoration methods cannot directly serve to real-world

Re-ID due to various limitations, e.g., the requirements of

reference samples, domain gap between synthesis and re-

ality, and incompatibility between low-level and high-level

methods. In this paper, to solve the above problem, we pro-

pose a degradation invariance learning framework for real-

world person Re-ID. By introducing a self-supervised dis-

entangled representation learning strategy, our method is

able to simultaneously extract identity-related robust fea-

tures and remove real-world degradations without extra

supervision. We use low-resolution images as the main

demonstration, and experiments show that our approach is

able to achieve state-of-the-art performance on several Re-

ID benchmarks. In addition, our framework can be easily

extended to other real-world degradation factors, such as

weak illumination, with only a few modifications.

1. Introduction

Person re-identification (Re-ID) is a pedestrian retrieval

task for non-overlapping camera networks. It is very chal-

lenging since the same identity captured by different cam-

eras usually have significant variations in human pose, view,

illumination conditions, resolution and so on. To withstand

the interference of identity-independent variations, the ma-
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Figure 1. Existing methods [28, 20, 18] only use simple synthetic

techniques, such as down-sampling for low resolution or gamma

correction for low illumination, to alleviate the image degradation

issue in Re-ID. This is far from the complex degradation in real-

world scenarios, which leads to the domain gap.

jor target of person Re-ID is to extract robust identity repre-

sentations. With the powerful representation learning capa-

bility, deep convolutional neural networks-based methods

have achieved remarkable performance on publicly avail-

able benchmarks. For example, the rank-1 accuracy on

Market-1501 [57] has reached 94.8% [58], which is very

close to the human-level performance.

However, there are still some practical issues that need

to be solved for real-world surveillance scenarios, and low

quality images caused by various degradation factors are

one of them. Several previous works [18, 38] have demon-

strated that such degradations have a serious negative im-

pact on the person Re-ID task. On the one hand, these

degradations lead to pool visual appearances and discrim-

inative information loss, making representation learning

more difficult; on the other hand, it brings the feature mis-

match problem and greatly reduces the retrieval perfor-

mance.
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Existing methods, which focus on alleviating the low-

level degradation issue, can be classified into three types:

1) Data augmentation. This kind of methods [1] syn-

thesize more training samples under different low-level vi-

sual conditions to improve the generalization performance

of the model. However, there is a domain gap between

synthetic data and real-world data. For example, most

of cross-resolution person Re-ID works use the simple

down-sampling operator to generate low-resolution images.

While the real-world low-resolution images captured usual-

ly contain more degradations, such as noise and blurring.

2) Combination with low-level vision tasks. This type

of methods [20, 49, 38, 18], which usually consists of a two-

stage pipeline, i.e., combine Re-ID backbone with existing

image restoration or enhancement modules to eliminate the

effects of degradations. Nevertheless, most existing low-

level vision algorithms require aligned training data, which

is impossible to collect in real-world surveillance scenarios.

3) Disentangled representation learning. In recen-

t years, some studies attempt to utilize generative adversar-

ial networks (GANs) to learn disentangled representations,

which is invariant to some certain interference factors, e.g.,

human pose [8] or resolution [5, 28]. Ge et al. [8] pro-

pose FD-GAN for pose-invariant feature learning without

additional pose annotations of the training set. To guide

the extraction of disentangled features, auxiliary informa-

tion usually needs to be introduced, which inevitably leads

to additional estimation errors or domain bias.

Based on the above observations, we argue that the lack

of supervised information about real degradations is the

main difficulty in solving real-world Re-ID. This inspires

us to think about how to adaptively capture the real-world

degradations with limited low-level supervision informa-

tion. In this work, we propose a Degradation-Invariant rep-

resentation learning framework for real-world person Re-

ID, named DI-REID. With self-supervised and adversarial

training strategies, our approach is able to preserve identity-

related features and remove degradation-related features.

The DI-REID consists of: (a) a content encoder and a degra-

dation encoder to extract content and degradation features

from each pedestrian image; (b) a decoder to generate im-

ages from previous features; (c) a reality discriminator and

a degradation discriminator to provide domain constraints.

To effectively capture the real-world degradations, we

generate images by switching the content or degradation

features of self-degraded image pairs and real image pairs.

The reality discriminator is employed to reduce the domain

gap between the synthesis and reality, while the degrada-

tion discriminator aims to estimate the degree of degrada-

tion of inputs. Utilizing these two discriminators is benefi-

cial for degradation-invariant representation learning. Since

the degradation degree may not have a certain discrete divi-

sion, we use rankGAN [29] as the degradation discriminator

to solve this problem.

In summary, our contribution is three-fold:

• We introduce a new direction to improve the per-

formance of person re-identification affected by vari-

ous image degradations in real-world scenarios. Our

method can alleviate the need for large amounts of la-

beled data in existing image restoration methods.

• We propose a degradation invariance learning frame-

work to extract robust identity representations for real-

world person Re-ID. With the self-supervised and dis-

entangled representation learning, our method is able

to capture and remove the real-world degradations

without extra labeled data.

• Experiments on several challenging Re-ID bench-

marks demonstrate that our approach favorably per-

forms against the state-of-the-art methods. With a few

modifications, our method is able to cope with differ-

ent kinds of degraded images in real-world scenarios.

2. Related Work

Since our work is related with feature representation

learning and GANs, we first briefly summarize these two

aspects of works.

2.1. Feature Representation Learning

Person re-identification, including image-based Re-ID

[24, 57] and video-based Re-ID [54, 31], is a very challeng-

ing task due to dramatic variations of human pose, camer-

a view, occlusion, illumination, resolution and so on. An

important objective of Re-ID is to learn identity representa-

tions, which are robust enough for the interference factors

mentioned above. These interference factors can be roughly

divided into high-level variations and low-level variations.

Feature learning against high-level variations. Such

variations include pose, view, occlusions, etc. Since these

variations tend to be spatially sensitive, one typical solution

is to leverage local features, i.e., pre-defined regional parti-

tion [39, 42, 43, 34], multi-scale feature fusion [33, 4, 60],

attention-based models [2, 3, 25, 35, 56] and semantic parts

extraction [11, 39, 22, 55]. These methods usually require

auxiliary tasks, such as pose estimation or human parsing.

The research line described above has been fully explored

and will not be discussed in detail. In this work, we focus

on the low-level variation problem.

Feature learning against low-level variations. Such

variations include illumination, resolution, weather, etc.

Low-level variations tend to have global consistency and

can be alleviated by image restoration methods, such as

super-resolution or low-light enhancement.

Most existing Re-ID methods, which are developed for

low-level variations, focus on the cross-resolution issue.
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Jiao et al. [20] propose to optimize SRCNN and Re-ID net-

work simultaneously in an end-to-end fashion. It is the first

work to introduce super-resolution methods to deal with

low-resolution Re-ID. To improve the scale adaptability of

SR methods, Wang et al. [49] adopt the cascaded SRGAN

structure to progressively recover lost details. Mao et al.

[38] propose Foreground-Focus Super-Resolution module

to force the SR network to focus on the human foreground,

then a dual stream module is used to extract resolution-

invariant features. On the other hand, several methods

[5, 28] utilize adversarial learning to extract the resolution-

invariant representations.

Similar to the resolution issue, illumination is another

common problem in real-world scenarios. The main impact

of illumination variations is the change in color distribution,

which has been studied in [45, 23]. In view of the lack of il-

lumination diversity in the current re-identification datasets,

Bak et al. [1] introduce SyRI dataset, which provides 100

virtual humans rendered with different illumination maps.

Based on the Retinex theory, Huang et al. [18] propose a

joint framework of Retinex decomposition and person Re-

ID to extract illumination-invariant features.

2.2. Generative Adversarial Networks

Generative Adversarial Network is first proposed by

Goodfellow et al. [9] to estimate generative models, and

then spawn a large number of variants and applications. For

person Re-ID, the usage of GANs can be roughly divided

into three categories: domain transfer [59, 50, 7, 1, 30, 48],

data augmentation [37, 26, 40, 58, 16] and feature repre-

sentation learning [8, 32, 5, 28, 52]. Liu et al. [30] u-

tilize multiple GANs to perform factor-wise sub-transfers

and achieves superior performance over other unsupervised

domain adaptation methods. Zheng et al. [58] integrate the

discriminative model and the generative model into a uni-

fied framework to mutually benefit the two tasks. Hou et

al. [16] propose STCnet to explicitly recover the appear-

ance of the occluded areas based on the temporal contex-

t information. Similar to STCnet, Li et al. [28] propose

Cross-resolution Adversarial Dual Network to simultane-

ously reconstruct the missing details and extract resolution-

invariant features.

3. Proposed Method

3.1. Overview

As shown in Figures 2 and 3, our proposed DI-REID

consists of two stages: a degradation invariance learn-

ing by a Degradation Decomposition Generative Adversari-

al Network (DDGAN) and a robust identity representation

learning by a Dual Feature Extraction Network (DFEN).

To learn degradation-invariant representations, we at-

tempt to capture and separate the real-world degradation

component from a single image. This is an ill-posed prob-

lem and extremely difficult since there are no degradation

annotations or reference images in the real-world scenar-

ios. Therefore, we synthesize self-degraded images to pro-

vide prior knowledge and guidance with self-supervised

methods, such as down-sampling, gamma correction and so

on. During the degradation invariance learning stage, the

aligned self-degraded image pairs and the non-aligned real

image pairs are used to train DDGAN in turn, which helps

to narrow the domain gap between synthesis and reality.

For identity representation learning, we find that using

only degradation-invariant representations does not lead to

superior Re-ID performance. This is because degradation

invariance forces the network to abandon those discrimina-

tive but degradation-sensitive features, e.g., color cues to il-

lumination invariance. Therefore, we design a dual feature

extraction network to simultaneously extract both types of

features. Besides, an attention mechanism is introduced for

degradation-guided feature selection.

3.2. Network Architecture

Content Encoder Ec. The content encoder Ec is used

to extract content features for image generation as well as

degradation-invariant identity representation, and DDGAN

and DFEN share the same content encoder. In particular, a

multi-scale structure is employed for Ec to facilitate gradi-

ent back propagation.

Degradation Encoders Ed and E
′

d
. Due to the domain

gap between real-world images and self-degraded images,

we design a degradation encoder Ed and a self-degradation

encoder E′
d to capture the degradation information, respec-

tively. Note that the weights of Ed and E′
d are not shared,

and E′
d is encouraged to convert synthetic degradation fea-

tures into real-world degradation features.

Decoder G. Similar to [58], we utilize the adaptive in-

stance normalization (AdaIN) layers [17] to fuse content

and degradation features for image generation.

Reality discriminator Dr . The reality discriminator

Dr forces the decoder to generate images that are close to

the realistic distribution. This can indirectly facilitate the

self-degradation encoder E′
d to produce real-world degra-

dation features.

Degradation discriminator Dd. The degradation dis-

criminator resolves the degree of degradation of the input,

encouraging the encoders to learn disentangled content and

degradation representations.

Identity Encoder Eid. As a pre-trained Re-ID back-

bone network, the identity encoder provides identity p-

reserving constraints for degradation invariance learn-

ing. This encoder is used to extract discriminative but

degradation-sensitive features during the identity represen-

tation learning phase.
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Figure 2. Overview of the proposed Degradation Decomposition Generative Adversarial Network, DDGAN. A self-degraded image pair

{xi, xj} and a real image pair {xi, xk} are alternately used to train the DDGAN. For each pair, input images are decomposed in-

to content features fc and degradation features fd, which are then swapped and combined to generate four reconstructed images, e.g.,

{xii, xjj , xij , xji}.

3.3. Degradation Invariance Learning

We aim to propose a general degradation invariance

learning network against various real-world degradation-

s under limited supervised information. In this section,

we only describe the most common unsupervised DDGAN.

More details about the semi-supervised DDGAN for un-

paired data are given in the supplement.

Formulation. Our proposed DDGAN is alternately

trained by a self-degraded image pair ps = {xi, xj} and

a real image pair pc = {xi, xk}, which are referred to as

Self-degradation Generation and Cross-degradation Gener-

ation. For example, as shown in Figure 2, during the self-

degradation generation phase, the input pair {xi, xj} is de-

composed into content features {f i
c , f

j
c } and degradation

features {f i
d, f

j
d} by the encoders Ec, Ed and E′

d. After

that, all features are combined in pairs to generate new im-

ages {xii, xij , xjj , xji} by the decoder G, where xij is gen-

erated from G(f i
c , f

j
d).

3.3.1 Self-degradation Generation

Given a self-degraded image pair ps = {xi, xj}, where

xj = Fdeg(xi), the type of the self-supervised degradation

function Fdeg depends on the specific real-world degrada-

tion factors. Since xj and xj are pixel-wise aligned, their

content features should be consistent. We provide this con-

straint using a invariable content loss:

Ls
invc = ||Ec(xi)− Ec(xj)||1. (1)

Further, we can reconstruct the images xii and xji with a

pixel-wise reconstruction loss:

Ls
recon = ||G(f i

c , f
i
d)− xi||1 + ||G(f j

c , f
i
d)− xi||1. (2)

Note that Ls
recon should not be applied to the reconstructed

images xij and xjj due to the adaptive effects of the self-

degradation encoder E′
d.

To ensure that the appearance of the reconstructed pedes-

trian images does not change significantly, an identity fea-

ture preserving loss is adopted:

Ls
pre =||Eid(G(f i

c , f
j
d))− Eid(xi)||1

+ ||Eid(G(f j
c , f

i
d))− Eid(xj)||1.

(3)

As mentioned earlier, the self-supervised degradation

function Fdeg tends to introduce undesired domain bias be-

tween reality and synthesis, which leads to the learned fea-

tures to deviate from the real-world distribution. To allevi-

ate this issue, we introduce a reality adversarial loss:

L
s
real =E[log(Dr(xi)) + log(1−Dr(G(f i

c , f
j

d)))]

+ E[log(Dr(xk)) + log(1−Dr(G(f j
c , f

j

d)))],
(4)

where both xi and xk are real-world images.
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At last, our main objective is to learn a degradation in-

dependent representation. In other words, after switching

the content features of the input image pair, the degradation

score ranking of reconstructed images should be consistent

with the original ranking. To provide such a constraint, we

introduce a degradation ranking loss:

L
s
deg =max(0, (Dd(xi)−Dd(G(f i

c , f
j

d))) ∗ γ + ǫ)

+max(0, (Dd(G(f j
c , f

i
d))−Dd(xj)) ∗ γ + ǫ),

(5)

where γ = 1 is the rank label of the input image pair, and

the margin ǫ controls the difference of degradation scores.

A higher degradation score means lower image quality.

3.3.2 Cross-degradation Generation

For the cross-degradation generation, we also perform im-

age encoding and decoding on the input real image pair

pc = {xi, xk}, where xi and xk are directly sampled from

the real-world data. To provide the regularization constrain-

t, we also introduce a self-reconstruction loss:

Lc
recon = ||G(f i

c , f
i
d)− xi||1 + ||G(fk

c , f
k
d )− xk||1, (6)

a reality adversarial loss:

L
c
real =E[log(Dr(xi)) + log(1−Dr(G(f i

c , f
k
d )))]

+ E[log(Dr(xk)) + log(1−Dr(G(fk
c , f

i
d)))],

(7)

and an identity feature preserving loss:

L
c
pre =||Eid(G(f i

c , f
k
d ))− Eid(xi)||1

+ ||Eid(G(fk
c , f

i
d))− Eid(xk)||1.

(8)

Different from self-degradation generation, xi and xk here

have completely inconsistent content information, which

means the invariable content loss is no longer applicable.

Since the purpose of degradation invariance learning is

to improve the real-world person Re-ID, we use a standard

identification loss to provide task-driven constraints:

Lc
id = E[−log(p(yi|xi))] + E[−log(p(yk|xk))], (9)

where the predicted probability p(yi|xi) and p(yk|xk) are

based on the content features f i
c and fk

c , respectively.

For unsupervised degradation invariance learning, the

real-world training data does not have any degradation-

related supervised information. To take advantages of re-

al data to model the real-world degradation distribution, we

also introduce a degradation ranking loss:

Lc
deg =max(0, (Dd(xi)−Dd(G(f i

c , f
k
d ))) ∗ γ + ǫ)

+max(0, (Dd(G(fk
c , f

i
d))−Dd(xk)) ∗ γ + ǫ),

{

γ = −1 if Dd(xi) > Dd(xk)
γ = 1 if Dd(xi) < Dd(xk)

,

(10)

Figure 3. Overview of proposed Dual Feature Extraction Network

(DFEN) for robust identity representation learning.

where the rank label γ depends on the predicted degrada-

tion scores of the real-world images xi and xk. In this way,

the disentangled content and degradation features can be

learned to approximate the real-world distribution without

extra supervised information.

3.3.3 Optimization

For self-degradation generation, the total objective is:

Ls
total =λinvcL

s
invc + λreconL

s
recon + λpreL

s
pre

+ λrealL
s
real + λdegL

s
deg.

(11)

For cross-degradation generation, the total objective is:

Lc
total =λidL

c
id + λreconL

c
recon + λpreL

c
pre

+ λrealL
c
real + λdegL

c
deg.

(12)

These two optimization phases are performed alternately.

3.4. Identity Representation Learning

As described in 3.1, the DFEN extracts the degradation-

invariant features finv and the degradation-sensitive

features fsen as identity representations, where the

degradation-invariant features are the content features with-

out dimension reduction.

Given a normal image, both the finv and fsen should

be kept; while for a degraded image, it should keep finv
and suppress fsen for Re-ID. To achieve this goal, we intro-

duce a degradation-guided attention module, which inputs

the degradation cues and outputs the attentive weights of

fsen. Although both Ed and Dd can provide the degrada-

tion information, we choose Dd for better interpretability.

Given an input image xi, the final identity representation is

formulated as:

f i
id = concat(f i

inv, f
i
sen ⊙Att(Dd(xi))), (13)

where ⊙ denotes element-wise product.

In addition, we use multiple classifiers to better coordi-

nate these two types of features. The total objective is:

Lid
total = λinvL

id
inv + λsenL

id
sen + λbothL

id
both, (14)
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Table 1. Cross-resolution Re-ID performance (%) compared to the state-of-the-art methods on the MLR-CUHK03, MLR-VIPeR and

CAVIAR datasets, respectively.

Method
MLR-CUHK03 MLR-VIPeR CAVIAR

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

CamStyle [59] 69.1 89.6 93.9 34.4 56.8 66.6 32.1 72.3 85.9

FD-GAN [8] 73.4 93.8 97.9 39.1 62.1 72.5 33.5 71.4 86.5

JUDEA [27] 26.2 58.0 73.4 26.0 55.1 69.2 22.0 60.1 80.8

SLD2L [21] - - - 20.3 44.0 62.0 18.4 44.8 61.2

SDF [47] 22.2 48.0 64.0 9.3 38.1 52.4 14.3 37.5 62.5

SING [20] 67.7 90.7 94.7 33.5 57.0 66.5 33.5 72.7 89.0

CSR-GAN [49] 71.3 92.1 97.4 37.2 62.3 71.6 34.7 72.5 87.4

FFSR+RIFE [38] 73.3 92.6 - 41.6 64.9 - 36.4 72.0 -

RAIN [5] 78.9 97.3 98.7 42.5 68.3 79.6 42.0 77.3 89.6

CAD-Net [28] 82.1 97.4 98.8 43.1 68.2 77.5 42.8 76.2 91.5

ResNet50 60.2 86.6 93.2 28.5 53.8 65.2 20.2 61.0 79.8

ResNet50 (tricks† ) 75.1 91.3 95.7 42.1 63.9 71.5 40.6 76.2 91.0

Ours 85.7 97.1 98.6 50.3 77.9 87.3 51.2 83.6 94.4

† Here all tricks we used include RandomHorizontalFlip, RandomCrop, BNNeck [36] and triplet loss.

where each loss term consists of a cross-entropy loss and a

triplet loss with hard sample mining [14].

4. Experiments

To evaluate our approach on person Re-ID task against

various real-world degradations, we focus on two major

degradation factors, i.e., resolution and illumination.

4.1. Datasets

We conduct experiments on four benchmarks: CAVIAR

[6], MLR-CUHK03 and MLR-VIPER for cross-resolution

Re-ID, and MSMT17 [50] for cross-illumination Re-ID.

The CAVIAR dataset comprises 1,220 images of 72 i-

dentities captured by two different cameras in an indoor

shopping center in Lisbon. Due to the resolution of one

camera is much lower than that of the other, it is very suit-

able for evaluating genuine cross-resolution person Re-ID.

The MLR-CUHK03 and MLR-VIPeR datasets are

based on the CUHK03 [24] and VIPeR [10], respectively.

MLR-CUHK03 includes 14,097 images of 1,467 identities,

while MLR-VIPeR contains 632 person image pairs cap-

tured from two camera views. Following SING [20], each

image from one camera is down-sampled with a ratio ran-

domly picked from { 1

2
, 1

3
, 1

4
} to construct cross-resolution

settings, where the query set consists of LR images while

the gallery set is only composed of HR images.

The MSMT17 dataset, which contains 32,621/93,820

bounding boxes for training/testing, is collected by 15

surveillance cameras on the campus, including both out-

door and indoor scenes. To cover as many time periods as

possible, four days with different weather conditions in one

month were selected for collecting the raw video.

4.2. Implementation Details

The proposed approach is implemented in PyTorch with

two NVIDIA 1080Ti GPUs. All the used images are re-

sized to 256× 128× 3. We employ a multi-scale ResNet50

[13] structure for the content encoder, and both discrimina-

tors Dreal and Ddeg follow the popular multi-scale Patch-

GAN structure [19]. More details about the optimizations

and structures can be found in the supplement.

4.3. Experimental Settings and Evaluation Metrics

We employ the single-shot Re-ID settings and use the

average Cumulative Match Characteristic (CMC) [20, 38,

5, 28] for evaluating cross-resolution Re-ID. In addition,

we choose downsampling with a ratio that obeys uniform

distribution U [2, 4] as the self-degradation function.

For cross-illumination Re-ID, we follow the standard

protocols of corresponding datasets. The mean Average

Precision (mAP) and CMC are adopted to evaluate the re-

trieval performance. Gamma correction is used as the self-

degradation function, where the gamma value obeys a uni-

form distribution U [2, 3.5].

4.4. ReID Evaluation and Comparisons

Cross-Resolution. We compare our DI-REID with the

state-of-the-art cross-resolution Re-ID methods as well as s-

tandard Re-ID methods. As shown in Table 1, our approach

achieves superior performance on all three adopted datasets
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Table 2. Cross-illumination Re-ID performance (%) compared to

the state-of-the-art methods on the MSMT17 dataset.

Methods Rank-1 Rank-5 Rank-10 mAP

GoogLeNet [44] 47.6 65.0 71.8 23.0

PDC [41] 58.0 73.6 79.4 29.7

GLAD [51] 61.4 76.8 81.6 85.9

PCB [43] 68.2 81.2 85.5 40.4

IANet [15] 75.5 85.5 88.7 46.8

ResNet50 57.4 72.9 78.4 29.2

ResNet50 (tricks) 68.8 80.9 84.7 35.8

Ours 75.5 86.2 89.5 47.1

Table 3. Ablation Study on the CAVIAR dataset.

Methods Rank-1 Rank-5 Rank-10

Ours w/o DIL1 44.6 82.2 93.8

Ours w/o multi-scale 47.2 82.4 95.2

Ours w/o attention 48.0 82.6 93.8

Ours (finv only) 41.0 80.8 92.2

Ours (fsen only) 45.4 80.0 91.2

Ours 51.2 83.6 94.4

and consistently outperform all competing methods at rank-

1. Note that our approach outperforms the best competi-

tor [28] by 8.4% at rank-1 on the only real-world cross-

resolution dataset CAVIAR. It proves the effectiveness of

our approach to the real-world resolution degradation.

Cross-Illumination. To demonstrate that our DI-REID

is capable of dealing with various real-world degradation,

extended evaluation on the real-world MSMT17 dataset is

also performed for cross-illumination Re-ID. As reported in

Table 2, competitive Re-ID performance is also achieved by

our approach compared with existing state-of-the-art meth-

ods. It is worth mentioning that we only use the illumina-

tion degradation prior without introducing extra structural

or semantic priors of human body parts.

4.5. Feature Analysis and Visualizations

Degradation-invariant identity features. We provide

the comparison on learned degradation-invariant identity

features with a ResNet-50 baseline model. The features

are generated by the content encoder and visualizations are

shown in Figure 4. All the feature maps are produced af-

ter three downsampling layers for a balance between high-

level semantics and fine-grained details. It is clear that de-

1For the w/o DIL configuration, we skip the stage of Degradation In-

variance Learning (directly assigning ImageNet pretrained weights to the

content encoder), and the degradation-guided attention module is disabled.

Figure 4. Visualizations of degradation-invariant features. Top: in-

put images, middle: features produced by our DI-REID, bottom:

features produced by a ResNet-50 baseline.

(a) Low-Resolution (LR) to High-Resolution (HR).

(b) High-Resolution to Low-Resolution.

Figure 5. Examples of cross-resolution image generation. (a) Im-

ages generated by HR degradation + LR content; (b) Images gen-

erated by LR degradation + HR content.

spite the degradation of illumination, the attentive regions of

degradation-invariant features are basically consistent. Be-

sides, even in extremely low-light conditions (e.g., 6th and

10th columns in Figure 4), our method still can extract ef-

fective discriminative features. We also find that the learned

degradation-invariant features are more focused on local ar-

eas, although no such guidance and constraints are used.

Analysis of representation disentanglement. Since

the proposed DI-REID framework extracts degradation-

invariant features via disentangled representation learning,

it is necessary to analyze the disentangled representations

for more insights and interpretability.

As shown in Figures 5 and 6, we provide the cross-

degradation generation results under cross-resolution and

cross-illumination settings, respectively. By reorganizing
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Figure 6. Examples of cross-illumination image generation. The

generated results are compared to two state-of-the-art low-light

image enhancement methods: LIME [12] and DeepUPE [46].

Figure 7. t-SNE visualization of degradation features on a 1000-

sample split, which randomly selected from the MSMT17 dataset.

content and degradation features, our DDGAN is able to

generate new samples with degradation characteristics of

the degradation provider and content characteristics of the

content provider. In other words, our framework is capable

of extracting degradation-independent features as identity

representations for the person Re-ID task. In addition, al-

though high-quality image generation is not our purpose,

these additional generated samples are expected to be u-

tilized for data augmentation for further performance im-

provement.

Analysis of Authenticity. Since this work focuses on

the real-world degradations, we also analyze the authen-

ticity of degradation features, that is, whether the real-

world degradation information is captured. As illustrated

in Figure 6, our approach achieves very consistent illumi-

nation adjustments without causing over-enhancement or

under-enhancement. Compared to the existing state-of-the-

art low-light image enhancement methods: LIME [12] and

DeepUPE [46], our results are more natural and close to the

real-world illumination distribution. We emphasize that our

approach does not utilize any of the illumination supervised

information of the original dataset, but only with the self-

supervised guidance of gamma correction. The t-SNE visu-

alization of learned degradation features of the real-world

MSMT17 dataset are shown in Figure 7, and a significant il-

lumination distribution along the manifold can be observed.

4.6. Ablation Study

We study the contribution of each component of our

approach on the CAVIAR dataset. As shown in Table 3,

all the components consistently achieve performance im-

provements, where the contribution of degradation invari-

ance learning is most significant, resulting in a performance

rise of 6.6% at Rank-1. We believe the reason is that the

learned features is able to simultaneously take account of

both identity discriminability and degradation invariance.

We also provide the analysis of degradation-invariant

features and degradation-sensitive features, i.e., finv and

fsen. It can be observed that fsen performs better at Rank-

1, while finv performs better at Rank-5 and Rank-10.

5. Conclusion

In this paper, we propose a degradation-invariance fea-

ture learning framework for real-world person Re-ID. With

the capability of disentangled representation and the self-

supervised learning, our method is able to capture and re-

move real-world degradation factors without extra labeled

data. In future work, we consider integrating other semi-

supervised feature representation methods, e.g., graph em-

bedding [53], to better extract pedestrian features from

noisy real-world data.
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