1794

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Lightweight Pyramid Networks for Image Deraining

Xueyang Fu™, Borong Liang, Yue Huang, Xinghao Ding

Abstract—Existing deep convolutional neural networks
(CNNs) have found major success in image deraining, but at
the expense of an enormous number of parameters. This limits
their potential applications, e.g., in mobile devices. In this paper,
we propose a lightweight pyramid networt (LPNet) for single-
image deraining. Instead of designing a complex network struc-
ture, we use domain-specific knowledge to simplify the learning
process. In particular, we find that by introducing the mature
Gaussian-Laplacian image pyramid decomposition technology
to the neural network, the learning problem at each pyramid
level is greatly simplified and can be handled by a relatively
shallow network with few parameters. We adopt recursive and
residual network structures to build the proposed LPNet, which
has less than 8K parameters while still achieving the state-of-the-
art performance on rain removal. We also discuss the potential
value of LPNet for other low- and high-level vision tasks.

Index Terms—Deep convolutional neural network (CNN),
image pyramid, lightweight networks, rain removal, residual
learning.

I. INTRODUCTION

AIN impacts not only human visual perception but also

computer vision systems, such as self-driving vehicles
and surveillance systems. Due to the effects of light refrac-
tion and scattering, objects in an image are easily blurred
and blocked by individual rain streaks. When facing heavy
rainy conditions, this problem becomes more severe due to
the increased density of rain streaks. Since most of the
existing computer vision algorithms are designed based on
the assumption of clear inputs, their performance is easily
degraded by rainy weather. Thus, designing effective and
efficient algorithms for rain streak removal is a significant

Manuscript received May 2, 2018; revised November 7, 2018 and
February 21, 2019; accepted June 28, 2019. Date of publication July 22,
2019; date of current version June 2, 2020. This work was supported in part
by the National Natural Science Foundation of China under Grant 61571382,
Grant 81671766, Grant 61571005, Grant 81671674, Grant 61671309, and
Grant U1605252, in part by the Fundamental Research Funds for the Central
Universities under Grant 20720160075 and Grant 20720180059, in part by the
CCF-Tencent open fund, and in part by the Natural Science Foundation of
Fujian Province of China under Grant 2017J01126. (Corresponding author:
Xinghao Ding.)

X. Fu is with the Fujian Key Laboratory of Sensing and Computing
for Smart City, School of Information Science and Engineering, Xiamen
University, Xiamen 361005, China, and also with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei 230026, China.

B. Liang, Y. Huang, and X. Ding are with the Fujian Key Laboratory
of Sensing and Computing for Smart City, School of Information Sci-
ence and Engineering, Xiamen University, Xiamen 361005, China (e-mail:
dxh@xmu.edu.cn).

J. Paisley is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA, and also with the Data Science
Institute, Columbia University, New York, NY 10027 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2926481

, and John Paisley

Fig. 1.
whole network only contains 7548 parameters, a 50% decrease on the best
lightweight comparison. (a) Rainy image. (b) Our result.

Deraining example of our LPNet for single-image deraining. The

problem with many downstream uses. Fig. 1 shows an example
of our proposed lightweight pyramid network (LPNet) and the
corresponding parameter savings over the next best lightweight
network.

Depending on the input data, rain removal algorithms can be
categorized into video-based and single-image-based methods.

A. Video-Based Methods

We first briefly review the rain removal methods in a
video, which was the major focus in the early stages of
this problem. These methods use both spatial and temporal
information from video. The first study on video deraining
removed rain from a static background using average intensi-
ties from the neighboring frames [1]. Other methods focus on
deraining in the Fourier domain [2], using Gaussian mixture
models (GMMs) [3], low-rank approximations [4], and via
matrix completions [5]. Ren er al. [6] divide rain streaks into
sparse ones and dense ones, then a matrix decomposition
based algorithm is proposed for deraining. More recently,
Wei et al. [7] propose a patch-based mixture of Gaussians for
rain removal in video. Although these methods work well, they
require temporal content of video. In this paper, we, instead,
focus on the single-image deraining problem.

B. Single-Image Methods

Since information is drastically reduced in individual
images, single-image deraining is a much more difficult prob-
lem. Methods for addressing this problem employ kernels [8],
low-rank approximations [4], [9], and dictionary learning
[10]-[13]. In [8], rain streaks are detected and removed by
using kernel regression and a non-local mean filtering. Kang
et al. [10] decompose a rainy image into its low- and high-
frequency components. The high-frequency part is processed
to extract and remove rain streaks by using sparse-coding-
based dictionary learning. In [11], a self-learning method is
proposed to automatically distinguish rain streaks from the

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8036-4071
https://orcid.org/0000-0003-2288-5287

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

high-frequency part. A discriminative sparse coding method
is proposed in [12]. By forcing the coefficient vector of rain
layer to be sparse, the objective function is solved to separate
background and rain streaks. Other methods utilize mixture
models [14] and local gradients [15] to model and then remove
rain streaks. By utilizing GMMs, Li et al. [14] explore patch-
based priors for both the clean and rain layers. The GMM
prior for background layers is learned from natural images,
while that for rain streaks layers is learned from rainy images.
In [15], three new priors are defined by exploring local image
gradients. The priors are used to model the objective function
which is solved by using alternating direction method of
multipliers (ADMMs).

Deep learning has also been introduced for this problem.
Learning-based methods and convolutional neural net-
works (CNN) have proven useful for a variety of high-level
vision tasks [16]-[23], as well as various image processing
problems [24]-[28]. In [29], a related work based on deep
learning is introduced to remove static raindrops and dirt
spots from pictures taken through windows. Our previous
CNN-based method for removing dynamic rain streaks is
introduced in [30]. Here, the authors build a relative shallow
network with three layers to extract features of rain streaks
from the high-frequency content of a rainy image. Based on
the introduction of an effective strategy for training very deep
networks [20], two deeper networks are proposed based on
image residuals [31] and multi-scale information [32], [33].
Zhang et al. [34] utilize the generative adversarial framework
to further enhance the textures and improve the visual quality
of derained results. Recently, in [35], a density-aware multi-
stream densely connected CNN is proposed for joint rain den-
sity estimation and deraining. This method can automatically
generate a rain density label, which is further utilized to guide
rain streaks removal.

1) Our Contributions: Although very deep networks
achieve excellent performance on single-image deraining,
a main drawback that potentially limits their application in
mobile devices, automatic driving, and other computer vision
tasks is their huge number of parameters. As a networks
become deeper, more storage space is required [36]. To address
this issue, we propose a LPNet, which contains fewer than
8K parameters, with the single image rain removal problem
in mind. Instead of designing a complex network structure,
we use domain-specific knowledge to simplify the learning
process. Specifically, we first adopt Laplacian pyramids to
decompose a degraded/rainy image into different levels. Then
we use recursive and residual networks to build a subnetwork
for each level to reconstruct Gaussian pyramids of derained
images. A specific loss function is selected for training each
subnetwork according to its own physical characteristics and
the whole training is performed in a multi-task supervision.
The final recovered image is the bottom level of the recon-
structed Gaussian pyramid.

The main feature of our LPNet approach is to use the
mature Gaussian—Laplacian image pyramid technique [37] to
transform one hard problem into several easier subproblems.
In other words, since the Laplacian pyramid contains different
levels that can differentiate large scale edges from small scale

1795

details, one can design simple and lightweight subnetwork to
handle each level in a divide-and-conquer way. The contribu-
tions of our paper are summarized as follows.

1) We show how to utilize domain-specific knowledge
to drive deep learning for the tough single-image
deraining problem. By combining the classical
Gaussian—Laplacian pyramid technique with CNN,
a simple network structure with few parameters
and relative shallow depth is sufficient for excellent
performance. To our knowledge, the resulting easy-to-
implement network is far more lightweight (in terms of
parameters) among deep networks with good deraining
performance.

2) Due to the multi-scale decomposition of the Gaussian—
Laplacian pyramid, the spatial scales of all pyramid
levels are constrained. Therefore, the LPNet we train
on a limited-sized rain streaks can also be adapted to
other sizes that have never been seen before. In other
words, although LPNet is trained on synthetic data by
necessity, it still generalizes well to real-world images.

3) We discuss how LPNet can be applied to other fun-
damental low- and high-level vision tasks in image
processing. We also show how LPNet can improve
downstream applications such as object recognition.

II. LIGHTWEIGHT PYRAMID NETWORK FOR DERAINING

In Fig. 2, we show our proposed LPNet for single-image
deraining. To summarize at a high level, we first decom-
pose a rainy image into a Laplacian pyramid and build a
subnetwork for each pyramid level. Then, each subnetwork
is trained with its own loss function according to the spe-
cific physical characteristics of the data at that level. The
network outputs a Gaussian pyramid of the derained image.
The final derained result is the bottom level of the Gaussian
pyramid.

A. Motivation

Since rain streaks are blended with object edges and the
background scene, it is hard to directly learn the deraining
function in the image domain [30]. To simplify the prob-
lem, it is natural to train a network on the high-frequency
information in images, which primarily contain rain streaks
and edges without background interference. Based on this
motivation, Fu et al. [30], [31] use the guided filter [38] to
obtain the high-frequency component of an image as the input
to a deep network, which is then derained and fused back with
the low-resolution information of the same image. However,
these two methods fail when very thick rain streaks cannot be
extracted by the guided filter. Inspired by this decomposition
idea, we instead build a lightweight pyramid of networks to
instead simplify the learning processing and reduce the number
of necessary parameters as a result.

B. Stage 1: Laplacian Pyramid

We first decompose a rainy image X into its Laplacian
pyramid, which is a set of images L with N levels

Ly (X) = Gn(X) — upsample(G 11 (X)) ey

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1796

Laplacian pyramid

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Gaussian pyramid

- Sub-Network conv = | @ L B o e e (y loss
Ls(X) T Ls(Y) Gy(Y)
Up-sample |
- Sub-Network conv#=2 —»@—WMBEA———>@—— ReLU |~ ———=—=— === === === —mmm o = (q loss
Ly(X) T Ly(Y) Gi(Y)
Up-sample
— . Sub-Network conv# =4 @ — "R - D ReLU | ==========—mmmmmm e oo e oo Y (1 loss
Ly(X) T Ly(Y) Ga(Y)
‘ Up-sample
Rainy image
RN Sub-Network conv# = 8 @ & ReLU —p---=--------------= S (1 loss + SSIM loss
La(X) I La(Y) GoY)
‘ Up-sample
N) o -
A AR Sub-Network conv# = 16 —— & [ReLU e N (1 loss + SSIM loss
LX) Li(Y) G(Y). derained image

sub-network of the nth level

LX),

om0
33

1th recursive block at nth level

v Convi
33 k = conv# 33

Fig. 2. Proposed structure of our deep lightweight pyramid of networks based on Gaussian-Laplacian image pyramids. The bottom level of the reconstructed
Gaussian pyramid is the final derained image. All notations correspond to (1)—(8).

where G, is the Gaussian pyramid, n = 1,..., N — 1. The
function G, (X) is computed by downsampling G,_1 (X) using
a Gaussian kernel, with G1(X) = X and Ly (X) = Gy (X).

The reasons we choose the classical Laplacian pyramid to

decompose the rainy image are fourfold.

1) The background scene can be fully extracted at the top
level of L, while the other levels contain rain streaks
and details at different spatial scales. Thus, the rain
interference is removed and each subnetwork only needs
to deal with high-frequency components at a single
scale.

2) This decomposition strategy will allow the network to
take advantage of the sparsity at each level, which
motivates many other deraining methods [8], [11], [30],
to simplify the learning problem. However, unlike pre-
vious deraining methods that use a single-scale decom-
position, LPNet performs a multi-scale decomposition
using Laplacian pyramids.

3) As shown in Fig. 3, compared with the image domain,
deep learning at each pyramid level is more like an
identity mapping (e.g., the top row is more similar to
the middle row, as evident in the bottom row) which
is known to be the situation where residual learning
(ResNet) excels [20].

4) The Laplacian pyramid is a mature algorithm with
low computation cost. Most calculations are based on
convolutions (Gaussian filtering) which can be easily
embedded into existing systems with GPU acceleration.

C. Stage 2: Subnetwork Structure

After decomposing X into different pyramid levels, we build
a set of subnetworks independently for each level to pre-
dict a corresponding clean Gaussian pyramid G(Y). All the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

W K0 ®)

Fig. 3. Example of Laplacian pyramid. We show three levels here. The
third and fifth levels are increased in size for better visualization. Bottom
row: histogram of the residual to demonstrate the increased sparsity over the
image domain. (a) Rainy image X. (b) L{(X). (c) L3(X). (d) L5(X). (e) Clean
image Y. (f) L1 (Y). (2) L3(Y). (h) L5(Y). () (@)~(e). () (b)~(B). (k) ()~(g).
) (d)—(h).

subnetworks have the same network structure with different
numbers of kernels. We adopt residual learning [20] for
each network structure and recursive blocks [39] to reduce
parameters. The subnetwork structure can be expressed as
follows.

1) Feature Extraction: The first layer extracts features from
the nth input level

H,0 =0 (W) % L,(X) + b)) 2)

where H indexes the feature map, * is the convolution
operation, W are weights and b are biases. ¢ is an
activation function for nonlinearity.

2) Recursive Block: To reduce the number of para-
meters, we build intermediate inference layers in a

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

recursive fashion. The basic idea is to share parameters
among recursive blocks. Motivated by our experiments,
we adopt three convolutional operations in each recur-
sive block. Calculations in the rth recursive block are

Fl, =o(W)sH,, | +b)) 3)
F,, =0c(W,xF,, +b;) (4)
F,, =W, «F, +b,)

where F!1-23} are intermediate features in the recursive
block, W23} and b{1:2:3} are shared parameters among
T recursive blocks and t = 1, ..., T. To help propagate
information and back-propagate gradients, the output
feature map H,, ; of the tth recursive block is calculated
by adding H,, o

H,, =0 (F), +H). (6)

3) Gaussian Pyramid Reconstruction: To obtain the out-
put level of the pyramid, the reconstruction layer is
expressed as

La(Y) = (W}« H, 7 + b)) + L(X). (7

After obtaining the output of the Laplacian pyramid
L(Y), the corresponding Gaussian pyramid of the
derained image can be reconstructed by

Gn(Y) = max(0, Ly(Y))
Gu(Y) = max(0, Ly (Y) + upsample(Gy 1.1 (Y))) (8)

where n =1, ..., N — 1. Since each level of a Gaussian
pyramid should equal or lager than 0, we use x =
max (0, x), which is actually the rectified linear units
(ReLLUs) operation [16], to simply correct the outputs.
The final derained image is the bottom level of the
Gaussian pyramid, i.e., G1(Y).

Denton et al. [40], Ghiasi and Fowlkes [41],
Lai et al. [42], and Shen et al. [43] build similar
networks based on the image pyramid, which are the
most related to our own work. However, these papers
apply similar structures to other tasks such as image
generation, segmentation, or super-resolution using dif-
ferent network approaches on the pyramid. On the other
hand, our LPNet aims to design a lightweight model and
focuses on problem simplification from the perspective
of signal analysis. The Gaussian—Laplacian pyramid is
utilized to constrain and simplify the problem. Moreover,
above-mentioned methods design the network structure
in a pyramid fashion to obtain multi-scale feature maps.
On the other hand, our LPNet directly decomposes the
input image by using exact Laplacian pyramid algorithm
to shrink all pyramid bands.

D. Loss Function

Given a training set {X', YiGT}f‘i |» where M is the number
of training data and Yg7 is the ground truth, the most widely
used loss function for training a network is mean squared
error (MSE). However, MSE usually generates over-smoothed
results due to the squared penalty that works poorly at edges

1797

in an image. Thus, for each subnetwork, we adopt different
loss functions and minimize their combination. Following [44],
we choose ¢ and Structural SIMilarity index (SSIM) [45] as
our loss functions. Specifically, as shown in Fig. 3, since finer
details and rain streaks exist in lower pyramid levels we use
SSIM loss to train the corresponding subnetworks for better
preserving high-frequency information. On the contrary, larger
structures and smooth background areas exist in higher pyra-
mid levels. Thus, we use the £ loss to update the correspond-
ing network parameters there. The overall loss function is

M

L= % D [ﬁ:zﬁ (Gn(Y"). Gu(Ygr))

i=1 Un=1

2
+ > L5™M(G, (YY), G, (Ygr))] ©)

n=1

where £55™ s the SSIM loss and £f1 is the ¢; loss.
In this paper, we set the pyramid level N = 5 based on our
experiments. We use SSIM loss for levels {1, 2} and ¢ loss
for all levels.

According to our network design, the direct input of the
subnetwork is a Laplacian pyramid. Each input of subnet-
work, except the top pyramid level, is high-frequency parts.
According to (7), the direct output of each subnetwork is
also high-frequency parts. Thus, even though we give the
same weights for £; and SSIM loss, the sparse constraint
of high-frequency information is implicitly embedded in each
subnetwork, which makes the subnetwork tend to focus on
high-frequency parts. Moreover, to make the proposed LPNet
to be a unified network, we connect all outputs and reconstruct
the Gaussian pyramid, which contains low-frequency parts
at each level. At the back-propagation step, the gradients
of lower pyramid level can flow to higher levels, which
helps updating the parameters. Thus, by using ¢; and SSIM
losses, our LPNet can achieve the state-of-the-art deraining
performances.

E. Removing Batch Normalization

As one of the most effective way to alleviate the internal
co-variate shift, batch normalization (BN) [46] is widely
adopted before the nonlinearity in each layer in existing
deep learning based methods. However, we argue that by
introducing image pyramid technology, BN can be removed to
improve the flexibility of networks [47]. This is because BN
constrains the feature maps to obey a Gaussian distribution.
While during our experiments, we found that distributions
of lower Laplacian pyramid levels of both clean and rainy
images are sparse. To demonstrate this viewpoint, in Fig. 4,
we show the histogram distributions of each Laplacian pyra-
mid level from 200 clean and light rainy training image
pairs from [32]. As can be seen, compared to the image
domain shown in Fig. 4(a), distributions of lower pyramid
levels, i.e., Fig. 4(c)—(f), are more sparse and do not obey
Gaussian distribution. This implies that we do not need BN to
further constrain the feature maps since the mapping problem
already becomes easy to handle. Moreover, removing BN can

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1798

image domain

5th Laplacian pyramid level

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

o 4th Laplacian pyramid level (logarithmic)

—clean images 002 —clean images —clean images
2‘0‘04 —rainy images ‘ Z'O 015" —rainy images = . —rainy images
3 3 oo 3
Soo2 ' £° £ /
- /\NVV‘N\NWN\ ! "”“-“’\"‘V\AMMM o008 ,’/ - ‘/ \\
0 0 4 . . : 15 :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1
pixel values pixel values pixel values
(@) (®) ©
0 3rd Laplacian pyramid level (logarithmic) 0 2nd Laplacian pyramid level (logarithmic) 0 1st Laplacian pyramid level (logarithmic)
clean images A clean images : clean images
> P \ rainy images > rainy images > 5 rainy images
3 5 =
@ \ @ @
Q =} =}
.10 / ©-10 S-10
a’ / a a
) ‘ 15
15 15
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
pixel values pixel values pixel values
(@ (e ®
Fig. 4. Statistical histogram distributions of 200 clean and rainy pairs from [32]. To highlight the tail error, (c)—(f) are logarithmic transformed. (a) Image
domain. (b) Fifth level. (c) Fourth level. (d) Third level. (¢) Second level. (f) First level.

Rainy image Level 1

Our result predicted level 1

Fig. 5. One example of intermediate results predicted by our LPNet.

sufficiently reduce GPU memory usage since the BN layers
consume the same amount of memory as the preceding convo-
lutional layers. Based on the above observation and analysis,
we remove BN layers from our network to improve flexibility
and reduce parameter numbers and computing resource.

F. Parameter Settings

We decompose an RGB image into a five-level
Laplacian pyramid by using a fixed smoothing kernel
[0.0625,0.25,0.375,0.25,0.0625], which is also used
to reconstruct the Gaussian pyramid. In our network
architecture, each subnetwork has the same structure with a
different numbers of kernels. The kernel sizes for W{%-1-3} are
3 x 3. For W2} the kernel size is 1 x 1 to further increase
nonlinearity and reduce parameters. For the reconstruction
layer W we also set the kernel size as 1 x 1 since this
layer is used to merge feature maps into RGB images. The
number of recursive blocks is 7 = 5 for each subnetwork.

Level 5

Level 4

Level 3

Level 2

- !
predicted predicted

Level 5

predicted Level 4

Level 3

predicted Level 2

For the activation function o, we use the leaky ReLUs
(LReLUs) [48] with a negative slope of 0.2.

Moreover, as shown in the last row of Fig. 3, higher levels
are closer to an identity mapping since rain streaks only remain
in lower levels. This means that, for higher levels, fewer para-
meters are required for learning a good network. Thus, from
low to high levels, we set the kernel numbers to 16, 8, 4, 2,
and 1, respectively. Since the top level is a tiny and smoothed
version of image and rain streaks remain in high-frequency
parts, the function of top level subnetwork is more like a
simple global contrast adjustment. Thus, we set the kernel
numbers to 1 kernel for the top level. As shown in Fig. 2,
by connecting the upsampled version of the output from the
higher level, the direct prediction of all subnetworks is actually
the clean Laplacian pyramid. We show the intermediate results
predicted by each subnetwork in Fig. 5. It is clear that rain
streaks remain in lower levels while higher levels are almost
the same. This demonstrates that our diminishing parameter
setting is reasonable.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

To each subnetwork, the equation of calculating parameter
number is the same. Assuming the number of kernels at
each layer is M and the channel of the input is C. Thus,
the parameter number of first layer and last layer are (C x
3x3XMA4+M)=9xMxC+Mand (M x1x1x
C+ C) = M x C + C, respectively. Since the recursive
blocks share the parameters, the number of parameters of all
blocks is actually equal to the number of one block. Thus,
the parameter number of each block is (M x 3 x 3 x M +
My+ M x1x1xM+M)+(Mx3x3xM+M)=
19 x M x M + 3 x M. Thus, the parameter number of each
subnetwork is 19 x M x M + 10 x M x C+4 x M + C.
According to our default configuration, C = 3 and M =
{16, 8,4,2, 1}. Thus, the total number of trainable parameters
is (5411 + 1491 + 443 + 147 + 56) = 7548, far fewer
than the hundreds of thousands often encountered in deep
learning.

G. Training Details

We use synthetic rainy images from [32] as our training
data. This data set contains 1800 images with heavy rain
and 200 images with light rain. We randomly generate three
million 80 x 80 clean/rainy patch pairs for training. We use
TensorFlow [49] to train LPNet using the Adam solver [50]
with a minibatch size of 10. We set the learning rate as 0.001.
The whole network is trained in a end-to-end fashion.

III. EXPERIMENTS

We compare our LPNet with six state-of-the-art deraining
methods: the GMM of [14], a CNN baseline super-resolution
convolutional neural network (SRCNN) [25], the deep detail
networks (DDNs) of [31], an advanced network called
convolution in convolution (CIC) [21], a convolutional neural
pyramid (CNP) network [43] for image processing, and
joint rain detection and removal (JORDER) [32]. For fair
comparison, all CNN based methods are retrained on the
same training data sets.

A. Synthetic Data

Three synthetic data sets are chosen for comparison. Two
of them are from [32] and each one contains 100 images.
One is synthesized with heavy rain called Rain/00H and the
other one is with light rain called Rain/00L. The third data set
called Rainl?2 is from [14] which contains 12 synthetic images.
All testing results shown are not included in the training data.
Following [32], for each CNN method, we train two models,
one is for heavy rain and the other is for light rain. The model
trained on the light rainy data set is used to test Rainl2.

Figs. 6-9 show visual results from each data set. As can be
seen, GMM [14] fails to remove rain streaks from heavy rainy
images. SRCNN [25] and DDN [31] are able to remove the
rain streaks while also tending to generate obvious artifacts.
Our LPNet has comparable visual results with JORDER and
outperforms other methods. The reason is twofold: first, due
to the multi-scale pyramid decomposition, each subnetwork
only needs to deal with specific components at that scale.
This enables each subnetwork to extract more accurate features
for more accurate image reconstruction. Second, both SRCNN
and DDN use MSE as the loss function to guide the network

1799

(8 (h) ()
Fig. 6. One synthetic image from Rainl00H [32]. (a) Ground Truth. (b) Rainy

image. (c) GMM. (d) SRCNN. (e) DDN. (f) CIC. (g) CNP. (h) JORDER.
(i) Our LPNet.

(a) (b) (©

(@

(€9) ()

Fig. 7. One synthetic image from Rainl00H [32]. (a) Ground Truth. (b) Rainy
image. (c) GMM. (d) SRCNN. (e) DDN. (f) CIC. (g) CNP. (h) JORDER.
(i) Our LPNet.

training, while our LPNet is trained by using a combined ¢
and SSIM loss. This can focus more attention to small errors
caused by rain streaks. Therefore, although all methods are
based on the CNN structure, these additional aspects of LPNet
makes it better able to perform the image restoration.

We also adopt peak signal-to-noise ratio (PSNR) and SSIM
[45] to perform quantitative evaluations in Table I. Our method
has comparable SSIM values with JORDER while outper-
forming other methods, in agreement with the visual results.
Although our result has a lower PSNR value than JORDER
method, the visual quality is comparable. This is because
PSNR is calculated based on the MSE, which measures
global pixel errors without considering local image characters.
Moreover, as shown in Table I our LPNet contains far fewer
parameters. Compared with the state-of-the-art methods CNP
[43] and JORDER [32], our LPNet achieves comparable
results while the parameter amount is reduced by 98.77% and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1800

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE I
AVERAGE SSIM AND PSNR VALUES ON SYNTHESIZED IMAGES

GMM [14] SRCNN [25] DDN ([31]
SSIM PSNR SSIM PSNR SSIM PSNR

Rainl0O0L 0.86 £ 0.06 | 28.7 £3.2 | 091 £0.04 | 294 +£2.2 | 096 & 0.02 | 34.6 + 3.1

Rainl00H 043 £0.14 | 150 £3.5 | 0.70 = 0.08 | 22.8 = 2.5 | 0.81 &= 0.07 | 26.9 + 2.7

Rainl2 091 £0.04 | 320 £23 | 092 +0.03 | 319 1.9 | 092 £ 0.04 | 344 £+ 3.1

Parameters # / reduction - 20,099 / -62.45% 57,369 / -86.84%
CIC [21] CNP [43] JORDER [32] Our LPNet
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Rainl00L 096 £0.02 | 33.6 =33 | 095+ 0.02 | 33.1 =26 | 097 £ 0.01 | 36.6 = 3.1 | 096 £ 0.02 | 334 £ 2.9
Rainl00H 0.80 £ 0.07 | 23.8 =25 | 0.83 £ 0.07 | 23.9 + 3.1 | 0.83 £ 0.07 | 265 £2.9 | 0.82 £ 0.06 | 234 + 2.0
Rainli?2 095 +£0.02 | 353 £33 | 095 +0.02 | 353 +£28 | 095+ 003 | 359 £3.7 | 095 £ 0.03 | 347 £ 3.1
Parameters # / reduction 15,287 / -50.62% 613,819 / -98.77% 369,792 / -97.96% 7,548

Fig. 8. One synthetic image from Rainl00L [32]. (a) Ground Truth. (b) Rainy
images. (¢) GMM. (d) SRCNN. (e) DDN. (f) CIC. (g) CNP. (h) JORDER.
(i) Our LPNet.

Fig. 9. One synthetic image from Rainl2 [14]. (a) Ground Truth. (b) Rainy
images. (¢) GMM. (d) SRCNN. (e) DDN. (f) CIC. (g) CNP. (h) JORDER.
(i) Our LPNet.

97.96%, respectively. This makes our LPNet more suitable for
storage, e.g., in mobile devices. In Fig. 10, we also show error
bars of SSIM and PSNR results to provide a more intuitive
comparison.

B. Real-World Data

Since one real-world rainy image may contain different
scales of rain streaks, the degradations of real-world rain
scenarios are very complex. In this section, we show that the
LPNet learned on synthetic training data still performs well on
real-world data. Figs. 11-13 show three visual results on real-
world images. As can be seen, LPNet generates consistently
promising derained results on images with different kinds of
rain streaks. This is because our LPNet utilizes Laplacian
pyramid algorithm to decompose rainy images. After decom-
position, all pyramid bands are shrink which helps to deal with
real-world scenarios.

Since no ground truth exists, we construct an independent
user study to provide realistic feedback and quantify the
subjective evaluation. We collect 300 real-world rainy images
from the Internet as a new data set.! We use the compared
five methods to generate derained results and randomly order
the outputs, as well as the original rainy image, and display
them on a screen. We then separately asked 20 participants
to rank each image from 1 to 5 subjectively according to
quality, with the instructions being that visible rain streaks
should decrease the quality and clarity should increase quality
(1 represents the worst quality and 5 represents the best
quality). In Fig. 14, we show the scatter plot of the rainy inputs
versus derained user scores. This small-scale experiment gives
additional support that our LPnet improves the deraining on
real-world images.

Moreover, when dealing with dense rain, LPNet trained
on images with heavy rain has a dehazing effect as shown
in Fig. 15, which can further improve the visual quality. This
is because the highest level subnetwork (low-pass component)
can adjust image contrast. Although dehazing is not the main
focus of this paper, we believe that LPNet can be easily
modified for joint deraining and dehazing.

C. Running Time and Convergence

To demonstrate the efficiency of LPNet, we show the aver-
age running time for a test image in Table II. Three different
image sizes are chosen and each one is tested over 100 images.
The GMM is implemented on CPUs according to the provided
code, while other deep CNN-based methods are tested on both

1Code and data set: https://xueyangfu.github.io/projects/LPNet.html.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING 1801

Ssim SSIM Ssim
1 0.9 0.98
08 0.96
0.95 07
° 5 5094
@ @ @
0.6
oo z Hose
3 o5 3
£ £ £ 09
0.85 04
03 088
0.8 02 0.86
GMM SRCNN DDN cic CNP JORDER LPNet GMM SRCNN DDN cic CNP JORDER LPNet GMM SRCNN DDN cic CNP JORDER LPNet
Methods Methods Methods
(a) (d) (©
PSNR PSNR PSNR
40 30 40
38
25
535 E] 536
7 @ 7
s e Haa
s s s
151 2@ 51
E3o E E3
15
30
25 10 28
GMM SRCNN DDN cic CNP JORDER LPNet GMM SRCNN DDN cic CNP JORDER LPNet GMM SRCNN DDN cic CNP JORDER LPNet
Methods Methods Methods
(@ (e) ®

Fig. 10. Error bars of quantitative metrics. Top row: SSIM results. Bottom row: PSNR results. (a) RainlO0L data set. (b) Rainl00H data set. (c) Rainl2
data set. (d) RainlO0L data set. (¢) Rainl00H data set. (f) Rainl2 data set.

(€3] ()

Fig. 11. One result on real-world rainy images. (a) Rainy images. (b) GMM. (c) SRCNN. (d) DDN. (e) CIC. (f) CNP. (g) JORDER. (h) Our LPNet.

(b)

(€] ()

Fig. 12. One result on real-world rainy images. (a) Rainy images. (b) GMM. (c) SRCNN. (d) DDN. (e) CIC. (f) CNP. (g) JORDER. (h) Our LPNet.

CPU and GPU. All experiments are performed on a server with complicated inference is required to process each new image.
Intel(R) Xeon(R) CPU E5-2683, 64 GB RAM and NVIDIA Our method has a comparable and even faster computational
GTX 1080. The GMM has the slowest running time since time on both CPU and GPU compared with other deep models.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1802

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

(@ (b)

(c) ()

Fig. 13. One result on real-world rainy images. (a) Rainy images. (b) GMM. (c) SRCNN. (d) DDN. (e) CIC. (f) CNP. (g) JORDER. (h) Our LPNet.
GMM SRCNN
5 5 .
4
1 1 1
0 0 0 0
1 1.5 2 25 1 15 2 25 1 1.5 2 2.5 1 15 2 25
Rainy inputs Rainy inputs Rainy inputs Rainy inputs
(@) (b) (©) (d
JORDER LPNet
1 1 1
0 0 0
1 1.5 2 2.5 1 15 2 25 1 1.5 2 2.5
Rainy inputs Rainy inputs Rainy inputs
(©) () (€
Fig. 14. Scatter plots of the rainy inputs versus derained user scores. Red line: mean value. Green line: standard deviation. (a) mean = 2.22, std = 0.50.

(b) mean = 3.41, std = 0.44. (c) mean = 3.50, std = 0.44. (d) mean = 3.45, std = 0.38. (¢) mean = 3.52, std = 0.35. (f) mean = 3.51, std = 0.39.

(g) mean = 3.67, std = 0.36.

TABLE II
COMPARISON OF RUNNING TIME (IN SECONDS)

GMM [14] SRCNN [25] DDN [31] CIC [21] CNP [43] JORDER [32] Our LPNet
Image size CPU GPU | CPU | GPU | CPU | GPU | CPU | GPU | CPU | GPU CPU GPU | CPU | GPU

500 x 500 1.99x103 - 025 | 0.03 1.51 0.16 1.01 0.12 1.19 | 021 | 295x10% | 0.18 | 0.67 | 0.12

750 x 750 3.09x103 - 0.58 | 0.09 | 333 | 022 | 258 | 0.18 [2.09 | 0.15 | 5.98x10% | 0.36 1.49 | 0.16

1024 x 1024 | 6.52x103 - 1.07 | 0.11 540 | 032 | 347 | 029 | 471 0.25 | 1.20x103 | 0.82 | 2.46 | 0.20

This is because LPNet uses relatively shallow networks for
each level, so requires fewer convolutions.

We also show the average training loss as a function of
training epoch in Fig. 16. We observe that LPNet converges
quickly on training with both light and heavy rainy data
sets. Since heavy rain streaks are harder to handle, as shown
in Fig. 6, the training error of heavy rain streaks has a
vibration.

D. Ablation Study
In this section, we discuss different configurations to study
their impact on performance.

1) Increasing Kernel Number: We have conducted an exper-
iment on the RainlO0OH data set with increased kernel para-
meters, i.e., 16 feature maps for all convolution layers at each
subnetwork. The results are shown in Table III. As can be seen,
the SSIM evaluation is better than JORDER and PSNR value is
also improved. We believe that the performance can be further
improved by using more kernels. However, increasing the
kernel number requires more storage and computing resources.
Fig. 17 shows one example by using different kernel numbers.
As can be seen, the visual quality is almost the same. Thus,
we use our diminishing kernel parameter setting to achieve the
balance between effectiveness and efficiency.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

(b)

Fig. 15. Example of dehazing effect. Our LPNet trained on the heavy rainy
data set can further improve image contrast. (a) Light rainy model. (b) Heavy
rainy model.

Training loss

0.3 T T T
—heavy rainy data
0.25 —light rainy data ||
o 0.2 b
=}
E
5 0.15
0
S
0.1+
0.05 ¥ 1

o

o
-
N
w

4 5 6 7 8 9
Number of epoch

Fig. 16. Convergence on different training data sets.

TABLE III
SSIM AND PSNR COMPARISON FOR DIFFERENT KERNEL PARAMETERS

1803

TABLE IV
SSIM AND PSNR COMPARISON FOR DIFFERENT PYRAMID LEVELS

Pyramid # 3 5 (default) 6
SSIM | PSNR | SSIM | PSNR | SSIM | PSNR
Rainl00H | 0.815 23.25 0.821 2343 | 0.824 | 23.57
TABLE V

SSIM AND PSNR COMPARISON FOR DIFFERENT NUMBERS
OF RECURSIVE BLOCK

Block # 3 5 (default) 7
SSIM | PSNR | SSIM | PSNR | SSIM | PSNR
Rainl00H | 0.812 | 21.05 | 0.821 2343 | 0.827 | 23.62
Training loss
0.4 T T T T y
—w/o skip connection
—w/ skip connection
0.3]
)
3
S
2 0.2
3

o
4
T
.

Number of iterations

Fig. 18. Training curves with and without skip connections.

TABLE VI
SSIM AND PSNR COMPARISON FOR DIFFERENT LOSS FUNCTIONS

Our LPNet (default) | Our LPNet (increasing)
SSIM PSNR SSIM PSNR
Rainl00H 0.82 23.43 0.84 24.09
Parameters # 7,548 27,055

Loss MSE SSIM + £1 (default) | MSE + SSIM + /3
SSIM [PSNR | SSIM [PSNR SSIM [PSNR
Rainl0OH | 0.78 | 2463 | 082 | 2383 081 | 2389

(b)

Fig. 17. One example by using different kernel numbers. (a) Rainy image.
(b) Default numbers. (c) Sixteen feature maps.

2) Pyramid Levels: Intuitively, if we decompose the image
into pyramid with more levels, the performance should
improve. We train three models by using different pyramid
levels: 3, 5, and 6. The average SSIM and PSNR results on
RainlO0H data set are shown in Table IV. As can be seen,
better performance can be achieved by increasing the levels
from 3 to 5. However, keeping increasing the levels brings
only limited improvement. This is because after generating
five pyramid levels, the input image can already be finely
decomposed, and the learning problem has been well sim-
plified. Continuously increasing the number of pyramid levels
can only provide limited constraints on the learning problem.
Thus, we decompose the input images into five pyramid levels
as the default setting.

3) Recursive Block Number: We also test the performance
of using different numbers of recursive block at each pyramid

level. We train and test on three networks with recursive block
numbers 3, 5, and 7. As shown in Table V, a significant
improvement can be achieved by increasing recursive block
numbers from 3 to 5. However, from our experiments we
find that keep increasing the recursive block numbers brings
limited improvement. This is because the learning process is
simplified by incorporating our domain-specific knowledge.
At each level, the nonlinear mapping function constructed by
five recursive blocks can well solve the learning problem.
Thus, we choose five recursive blocks as the default setting.

4) Skip Connections: Although Laplacian pyramid images
introduce sparsity in each level to simply the mapping prob-
lem, it is still essential to add skip connection in each subnet-
work. We adopt skip connection for two reasons. First, image
information may be lost during feed-forward convolutional
operations, using skip connection helps to propagate infor-
mation flow and improve the deraining performance. Second,
using skip connection helps to back-propagate gradient, which
can accelerate the training procedure, when updating parame-
ters. In Fig. 18, we show the training curves on the heavy
rainy data set with and without all skip connections. As can
be seen, using skip connection can bring a faster convergence
rate and lower training loss.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1804

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE VII
SSIM AND PSNR COMPARISON FOR NONRAINY IMAGES

GMM [14] | SRCNN [25] | DDN [31] | CIC [21] | CNP [43] | JORDER [32] | Our LPNet
PSNR 31.03 33.17 31.88 39.33 37.58 41.05 40.83
SSIM 0.915 0.975 0.980 0.990 0.990 0.996 0.994

(b)

(c) (@

Fig. 19. Deraining example by using different loss functions. Using SSIM + ¢ loss generates a more sharpen result as shown in (c). While shown in (d),
a similar result with (c) is generated by using all the three losses. (a) Rainy image. (b) MSE loss. (c) SSIM + ¢ loss. (d) MSE + SSIM + £ loss.

5) Loss Function: We use SSIM as a part of loss func-
tion (9) for two main reasons. First, SSIM is calculated based
on local image characteristics, e.g., local contrast, luminance,
and details, which are also the characteristics of rain streaks.
Thus, using SSIM as the loss function is appropriate to guide
the network training. Second, the human visual system is
also sensitive to local image characteristics. SSIM has been
motivated as generating more visually pleasing results, unlike
PSNR. It has, therefore, become a more prominent measure in
the image processing community. We also use 1 loss because
€1 does not overpenalize larger errors and, thus, can preserve
structures and edges. On the contrary, the widely used MSE
loss (which PSNR is based on) often generates oversmoothed
results because it penalizes larger errors and tolerates small
errors. Therefore, MSE struggles to preserve underlying struc-
tures in the image compared with 1. Fig. 19 shows three
results generated by using our combined loss (9) and MSE
loss, respectively. As can be seen, using our combined loss
(9) can preserve more details. Moreover, using all the three
losses generates a similar result with (9). The SSIM and PSNR
comparison is also shown in Table VI. Thus, we choose (9)
as the default loss function.

6) Non-Rainy Images: Intuitively, a deraining algorithm
should be able to distinguish rain streaks from object details.
In other words, if the input is a nonrainy image, the output
should not be seriously distorted. To demonstrate that our
LPNet can isolate rain streaks, we test 500 clean images from
BSD500 data set [51]. Fig. 20 shows one visual comparison,
where we see that the output of LPNet is almost the same
as the clean image. As can be seen in Table VII, LPNet
has comparable results with JORDER in this case, and out-
performs other methods. This experiment indicates that our
multi-scale decomposition strategy is helpful for capturing and
distinguishing rain streaks.

E. Other Applications

1) Other Image Processing Tasks: Since both Laplacian
pyramids and CNNs are fundamental and general image
processing technologies, our network design has potential
value for other low-level vision tasks. Fig. 21 shows the

(b)

Fig. 20. One example of directly testing on nonrainy image. (a) Nonrainy
input/PSNR, SSIM. (b) Our LPNet / 45.87, 0.998.

Fig. 21. Visual comparison on Gaussian denoising, our LPNet generates a
comparable visual result with fewer parameters. (a) Ground Truth. (b) Noisy
image, 0 = 30. (¢) DnCNN [52]. (d) Our result.

experimental result on Gaussian denoising compared with
one popular deep CNN based method, which is designed
for general image restoration, named DnCNN [52]. We use
the BSD500 data set provided by [51] and test on noise
levels 30 and 50. Fig. 21 shows one visual result at noise
level 30. As can be seen, our LPNet can well handle the image
denoising task since the desired image is also corrupted by
high frequency content. We also show the quantitative results
in Table VIII. Compared to DnCNN, our LPNet achieves

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

TABLE VIII
SSIM AND PSNR COMPARISON ON GAUSSIAN DENOISING

DnCNN [52] Our LPNet
SSIM | PSNR | SSIM | PSNR
o =130 0.82 30.44 0.81 29.63
o =150 0.76 26.37 0.74 24.59
Parameter # 559,233 7,548

Fig. 22.
image. We use Faster R-CNN [53] to detect objects. (a) Direct detection.
(b) Deraining + detection.

Example of joint deraining and object detection on a real-world

comparable SSIM and PSNR values with fewer parameters.
This test demonstrates that LPNet can generalize to similar
image restoration problems.

2) Preprocessing for High-Level Vision Tasks: Due to the
lightweight architecture, our LPNet can potentially be effi-
ciently incorporated into other high-level vision systems. For
example, we study the problem of object detection in rainy
environments. Since rain steaks can blur and block objects,
the performance of object detection will degrade in rainy
weather. Fig. 22 shows a visual result of object detection by
combining with the popular Faster R-CNN model [53]. It is
obviously that rain streaks can degrade the performance of
Faster R-CNN, i.e., by missing detections and producing low
recognition confidence. On the other hand, after deraining by
LPNet, the detection performance has a notable improvement
over the naive Faster-RCNN.

In addition, due to the lightweight architecture, using LPNet
with Faster R-CNN does not significantly increase the com-
plexity. To process a color image with size of 1024 x 1024,
the running time is 3.7 s for Faster R-CNN, and 4.0 s for
LPNet + Faster R-CNN.

IV. CONCLUSION

In this paper, we have introduced a lightweight deep net-
work that is based on the classical Gaussian—Laplacian pyra-
mid for single image deraining. Our LPNet contains several
subnetworks and inputs the Laplacian pyramid to predict the
clean Gaussian pyramid. By using the pyramid to simplify
the learning problem and adopting recursive blocks to share
parameters, LPNet has fewer than 8K parameters while still
achieving good performance. Moreover, due to the generality

1805

and lightweight architecture, our LPNet has potential values
for other low- and high-level vision tasks.

By utilizing Gaussian—Laplacian pyramid, the spatial con-
straint on each pyramid level is particularly effective to
separate high-frequency parts into different scales. We have
verified that this decomposition can capture a narrower dis-
tribution to describe both rain streaks and objects’ details
at different scales. Thus, our LPNet can generalizes well to
real-world images since the spatial scale of each pyramid
level is well constrained. Without the constraint of pyramid
decomposition, the image deraining problem becomes tougher
since the change of image contents and rain streaks are almost
infinite. Our method is not without limitations. Issues such as
the optimal size of kernel, how to take rain orientations into
consideration, how to well distinguish rain streaks from object
edges, and how to handle heavy rain artifacts, are still open
problems. Moreover, other advanced deep learning methods,
such as generative adversarial networks (GANs), can also be
utilized to improve the deraining performance.

Moreover, it should be noticed that fewer parameters do not
equal to fewer floating-point operations or higher inference
efficiency. The goal of this work is to design a lightweight
model for the tough image deraining problem. For practical
applications, the computational time can be further improved
by combining our network with more efficient network archi-
tectures, such as MobileNet [54] and ShuffleNet [55]. We will
incorporate above issues into our future work.

REFERENCES

[1] K. Garg and S. K. Nayar, “Detection and removal of rain from videos,”
in Proc. CVPR, Jun./Sep. 2004, p. 1.

[2] P.C.Barnum, S. Narasimhan, and T. Kanade, “Analysis of rain and snow
in frequency space,” Int. J. Comput. Vis., vol. 86, nos. 2-3, pp. 256-274,
Jan. 2010.

[3] J. Bossu, N. Hautiére, and J.-P. Tarel, “Rain or snow detection in image
sequences through use of a histogram of orientation of streaks,” Int.
J. Comput. Vis., vol. 93, no. 3, pp. 348-367, 2011.

[4] Y.-L. Chen and C.-T. Hsu, “A generalized low-rank appearance model
for spatio-temporally correlated rain streaks,” in Proc. ICCV, Dec. 2013,
pp. 1968-1975.

[5] J.-H. Kim, J.-Y. Sim, and C.-S. Kim, “Video deraining and desnowing
using temporal correlation and low-rank matrix completion,” [EEE
Trans. Image Process., vol. 24, no. 9, pp. 2658-2670, Sep. 2015.

[6] W. Ren, J. Tian, Z. Han, A. Chan, and Y. Tang, “Video desnowing and
deraining based on matrix decomposition,” in Proc. ICCV, Jul. 2017,
pp. 4210-4219.

[71 W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, and Z. Xu, “Should we
encode rain streaks in video as deterministic or stochastic?” in Proc.
ICCV, Oct. 2017, pp. 2516-2525.

[8] J.-H. Kim, C. Lee, J.-Y. Sim, and C.-S. Kim, “Single-image deraining
using an adaptive nonlocal means filter,” in Proc. IEEE ICIP, Sep. 2013,
pp- 914-917.

[9] Y. Chang, L. Yan, and S. Zhong, “Transformed low-rank model for line

pattern noise removal,” in Proc. ICCV, Oct. 2017, pp. 1726-1734.

L.-W. Kang, C.-W. Lin, and Y.-H. Fu, “Automatic single-image-based

rain streaks removal via image decomposition,” IEEE Trans. Image

Process., vol. 21, no. 4, pp. 1742-1755, Apr. 2012.

D.-A. Huang, L.-W. Kang, Y.-C. F. Wang, and C.-W. Lin, “Self-learning

based image decomposition with applications to single image denoising,”

IEEE Trans. Multimedia, vol. 16, no. 1, pp. 83-93, Jan. 2014.

Y. Luo, Y. Xu, and H. Ji, “Removing rain from a single image

via discriminative sparse coding,” in Proc. ICCV, Dec. 2015,

pp- 3397-3405.

Y. Wang, S. Liu, C. Chen, and B. Zeng, “A hierarchical approach for

rain or snow removing in a single color image,” IEEE Trans. Image

Process., vol. 26, no. 8, pp. 3936-3950, Aug. 2017.

[10]

(11]

[12]

[13]

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1806

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Rain streak removal
using layer priors,” in Proc. CVPR, Jun. 2016, pp. 2736-2744.

L. Zhu, C.-W. Fu, D. Lischinski, and P.-A. Heng, “Joint bi-layer
optimization for single-image rain streak removal,” in Proc. ICCV,
Oct. 2017, pp. 2526-2534.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097-1105.

H. Cecotti, M. P. Eckstein, and B. Giesbrecht, “Single-trial classification
of event-related potentials in rapid serial visual presentation tasks using
supervised spatial filtering,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 11, pp. 2030-2042, Nov. 2014.

T. Chen, L. Lin, L. Liu, X. Luo, and X. Li, “DISC: Deep image saliency
computing via progressive representation learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 6, pp. 1135-1149, Jun. 2016.

M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, “Change detection in
synthetic aperture radar images based on deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 125-138, Jan. 2015.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770-778.

Y. Pang, M. Sun, X. Jiang, and X. Li, “Convolution in convolution for
network in network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 5, pp. 1587-1597, May 2018.

T. Li, B. Ni, M. Xu, M. Wang, Q. Gao, and S. Yan, “Data-driven affective
filtering for images and videos,” IEEE Trans. Cybern., vol. 45, no. 10,
pp. 2336-2349, Oct. 2015.

X. Cao, F. Zhou, L. Xu, D. Meng, Z. Xu, and J. Paisley, “Hyper-
spectral image classification with Markov random fields and a convo-
lutional neural network,” IEEE Trans. Image Process., vol. 27, no. 5,
pp. 2354-2367, May 2018.

W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1275-1286, Jun. 2015.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295-307, Feb. 2015.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent mem-
ory network for image restoration,” in Proc. ICCV, Oct. 2017,
pp. 4539-4547.

X. Hu, G. Feng, S. Duan, and L. Liu, “A memristive multilayer
cellular neural network with applications to image processing,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 8, pp. 1889-1901,
Aug. 2017.

R. Dian, S. Li, A. Guo, and L. Fang, “Deep hyperspectral image
sharpening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5345-5355, Nov. 2018.

D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken
through a window covered with dirt or rain,” in Proc. ICCV, Dec. 2013,
pp. 633-640.

X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the skies:
A deep network architecture for single-image rain removal,” IEEE Trans.
Image Process., vol. 26, no. 6, pp. 2944-2956, Jun. 2017.

X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, “Removing
rain from single images via a deep detail network,” in Proc. CVPR,
Jul. 2017, pp. 3855-3863.

W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, “Deep joint rain
detection and removal from a single image,” in Proc. CVPR, Jul. 2017,
pp. 1357-1366.

W. Yang, R. T. Tan, J. Feng, J. Liu, S. Yan, and Z. Guo, “Joint rain
detection and removal from a single image with contextualized deep
networks,” IEEE Trans. Pattern Anal. Mach. Intell., to be published.
doi: 10.1109/TPAMI.2019.2895793.

H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a
conditional generative adversarial network,” IEEE Trans. Circuits Syst.
Video Technol., to be published. doi: 10.1109/TCSVT.2019.2920407.
H. Zhang and V. M. Patel, “Density-aware single image de-raining using
a multi-stream dense network,” in Proc. CVPR, Jun. 2018, pp. 695-704.
S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. ICLR, 2016, pp. 1-14.

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact
image code,” IEEE Trans. Commun., vol. COM-31, no. 4, pp. 532-540,
Apr. 1983.

K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397-1409, Jun. 2013.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proc. CVPR, Jul. 2017, pp. 3147-3155.

E. L. Denton, S. Chintala, and R. Fergus, “Deep generative image
models using a Laplacian pyramid of adversarial networks,” in Proc.
NIPS, 2015, pp. 1486-1494.

G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction
and refinement for semantic segmentation,” in Proc. ECCV, 2016,
pp- 519-534.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. CVPR,
Jul. 2017, pp. 624-632.

X. Shen, Y.-C. Chen, X. Tao, and J. Jia, “Convolutional neural pyramid
for image processing,” 2017, arXiv:1704.02071. [Online]. Available:
https://arxiv.org/abs/1704.02071

H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47-57, Mar. 2017.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” /EEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. ICML,
2015, pp. 1-11.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. CVPR Workshops,
Jul. 2017, pp. 136-144.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, 2013, pp. 1-6.
M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX Symp. Oper. Syst. Design Implement. (OSDI),
2016, pp. 1-21.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2014, pp. 1-15.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 3, no. 5, pp. 898-916, May 2011.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian Denoiser: Residual learning of deep CNN for image denois-
ing,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155,
Jul. 2017.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS,
2015, pp. 91-99.

A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: https://arxiv.org/abs/1704.04861

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
CVPR, Jun. 2018, pp. 6848-6856.

Xueyang Fu received the Ph.D. degree in signal
and information processing from Xiamen University,
Xiamen, China, in 2018.

From 2016 to 2017, he was a Visiting Stu-
dent with Columbia University, New York, NY,
USA, sponsored by the China Scholarship Council.
He is currently an Associate Researcher with the
Department of Automation, University of Science
and Technology of China, Hefei, China. His cur-
rent research interests include machine learning and
image processing.

Borong Liang received the B.S. degree from Wuhan
University, Wuhan, China, in 2016. He is currently
pursuing the master’s degree with the Department
of Communication Engineering, School of Informa-
tion Science and Engineering, Xiamen University,
Xiamen, China.

His current research interests include machine
learning and image processing.

http://dx.doi.org/10.1109/TPAMI.2019.2895793
http://dx.doi.org/10.1109/TCSVT.2019.2920407

FU et al.: LIGHTWEIGHT PYRAMID NETWORKS FOR IMAGE DERAINING

Yue Huang received the B.S. degree from Xiamen
University, Xiamen, China, in 2005, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2010.

From 2015 to 2016, she was a Visiting Scholar
with Carnegie Mellon University, Pittsburgh, PA,
USA. She is currently an Associate Professor with
the Department of Communication Engineering,
School of Information Science and Engineering,
Xiamen University. Her current research interests
include machine learning and image processing.

Xinghao Ding was born in Hefei, China, in 1977.
He received the B.S. and Ph.D. degrees from the
Department of Precision Instruments, Hefei Uni-
versity of Technology, Hefei, in 1998 and 2003,
respectively.

From 2009 to 2011, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, Duke University, Durham,
NC, USA. Since 2011, he has been a Professor with
the School of Information Science and Engineer-
ing, Xiamen University, Xiamen, China. His current
research interests include machine learning, representation learning, medical
image analysis, and computer vision.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 14,2020 at 06:41:15 UTC from IEEE Xplore. Restrictions apply.

1807

John Paisley received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Duke Univer-
sity, Durham, NC, USA.

He was a Post-Doctoral Researcher with the Com-
puter Science Department, University of California
at Berkeley, Berkeley, CA, USA, and with Computer
Science Department, Princeton University, Prince-
ton, NJ, USA. He is currently an Associate Profes-
sor with the Department of Electrical Engineering,
Columbia University, New York, NY, USA, where
he also a member of the Data Science Institute.

His current research is machine learning, focusing on models and inference
techniques for text and image processing applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

