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A Deep Information Sharing Network for
Multi-Contrast Compressed Sensing

MRI Reconstruction
Liyan Sun, Zhiwen Fan, Xueyang Fu , Yue Huang, Xinghao Ding , and John Paisley

Abstract— Compressed sensing (CS) theory can accelerate
multi-contrast magnetic resonance imaging (MRI) by sampling
fewer measurements within each contrast. However, conventional
optimization-based reconstruction models suffer several limita-
tions, including a strict assumption of shared sparse support,
time-consuming optimization, and “shallow” models with diffi-
culties in encoding the patterns contained in massive MRI data.
In this paper, we propose the first deep learning model for
multi-contrast CS-MRI reconstruction. We achieve information
sharing through feature sharing units, which significantly reduces
the number of model parameters. The feature sharing unit
combines with a data fidelity unit to comprise an inference block,
which are then cascaded with dense connections, allowing for
efficient information transmission across different depths of the
network. Experiments on various multi-contrast MRI datasets
show that the proposed model outperforms both state-of-the-art
single-contrast and multi-contrast MRI methods in accuracy and
efficiency. We demonstrate that improved reconstruction quality
can bring benefits to subsequent medical image analysis. Further-
more, the robustness of the proposed model to misregistration
shows its potential in real MRI applications.

Index Terms— Compressed sensing, multi-contrast MRI recon-
struction, deep neural networks.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) has been widely
used to generate anatomically precise images of in-vivo

tissue. A major limitation of MRI is the relatively slow data
acquisition speed. Compressed sensing (CS) has therefore
been used to accelerate MRI by reducing the number of
k-space (i.e., Fourier) measurements directly acquired by the
machine [1]. CS theory shows how accurate or even perfect
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reconstruction can be achieved via appropriate optimizations to
fill in the missing Fourier coefficients of k-space [2]. Recently,
compressed sensing MRI has been approved by the FDA for
GE and Siemens, two major vendors [3]. Hence more MRI
scans are expected to be made using compressed sensing
methods in clinics, in order to improve patient comfort by
speeding up imaging speed. Compressed sensing for magnetic
resonance imaging (CS-MRI) is now one of the classic inverse
imaging problems in the field of computer vision, but still a
very active research topic in medical imaging.

Similar to other image restoration and reconstruction tasks,
research on CS-MRI is driven by proposing an effective
optimization model for MRI reconstruction. For example, MRI
is often modeled with sparsity constraints in a fixed transform
bases, e.g., SparseMRI [4], TVCMRI [5], RecPF [6] and
FCSA [7], [8]. Limited by the representation ability of such
models that use non-adaptive transform bases, other work has
been devoted to utilizing the geometric information within
images, such as PBDW [9], PANO [10], FDLCP [11] and
GBRWT [12]. Dictionary learning techniques have also been
introduced [13], [14] for adaptive basis learning.

As [12], [13] show, models with adaptive transform bases
achieve higher reconstruction quality, but at the expense
of heavy computational burden. Furthermore, conventional
optimization-based CS-MRI methods are implemented in situ,
meaning they do not rely on information from MRI training
data. The first issue is a clear drawback, while the second
may have positive aspects, but the power of deep learning has
shown a clear advantage in exploiting big data resources with
a deep neural network.

Thus, deep learning has recently been introduced to
CS-MRI. For example, Wang et al. [15] use a vanilla con-
volutional neural networks model to learn the mapping from
zero-filled MRI to fully-sampled MRI via a massive MRI
training set. (Note the term “zero-filled MRI” means the
missing Fourier coefficients are replaced by zeros, followed by
an inverse 2D FFT.) Sun et al. [16] proposed ADMM-NET as
a modification of the alternating direction method of multipli-
ers (ADMM) algorithm, where the parameters are inferred via
back-propagation. Generative adversarial networks have also
been introduced [17], [18]. In other CNN approaches, Lee
et al. [19] proposed a modified U-shape convolutional neural
networks to learn the mapping in the residual domain, while
Schlemper et al. [20], [21] proposed a deep cascade con-
volutional neural network (DC-CNN) to unroll the standard
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Fig. 1. Multi-contrast MRI images share similar structures.

paradigm of CS-MRI into the deep learning architecture.
DC-CNN represents the state-of-the-art performance in single-
contrast CS-MRI in both imaging quality and speed.

The work mentioned above is based on single-contrast
CS-MRI reconstruction. Usually, an MRI scan can obtain
images of the same anatomical section under different con-
trasts, such as T1, T2, and proton-density (PD) weighted
MRI generated by applying different MRI protocols [22].
Multi-contrast MRI contains similar, but not the same
image structures. By comparing multiple contrast MRI
in the same region, radiologists can detect subtle abnor-
malities such as a developing tumor. This is illustrated
in Figure 1(a), 1(b) and 1(c), where PD, T1 and T2 MRI in
the SRI24 [23] datasets exhibit similar structures. In the second
row of Figure 1 we show the root of sum of squares of
the horizontal and vertical gradients of the multi-contrast
MR images. Rather than reconstruct each multi-contrast MRI
independently, joint reconstruction can provide higher quality
images by exploiting such structural similarity.

In this paper, we propose the first deep learning mod-
els for multi-contrast CS-MRI reconstruction. We start with
two basic networks called deep independent reconstruction
network (DIRN) and deep feature sharing network (DFSN).
DIRN uses separate parallel networks to reconstruct each
contrast of the MRI where each network is a state-of-the-art
DC-CNN architecture [20]. DFSN takes the further step of
applying a feature sharing strategy that significantly reduces
the number of network parameters. Our final deep learning
model, which extends the state-of-the-art results of DFSN,
uses a dense connection strategy to transfer information across
layers in the network. We call this end-to-end model a
deep information sharing network (DISN) for multi-contrast
CS-MRI inversion. DISN comprises cascaded and densely
connected inference blocks consisting of feature sharing units
and data fidelity units. In the feature sharing units, all
multi-contrast MRI share the same feature maps. We use dense
connections to help information sharing at different depths.

Our contributions can be summarized as follows: (1) In
the proposed basic DFSN model, the feature sharing unit

fully exploits the similarity among the multi-contrast MRI.
The comparative experiments show the DFSN model out-
performs DIRN model with multiple amounts of parameters
of the independent parallel networks. (2) In the proposed
DISN model, the dense connection operation is proposed
to propagate the information from lower blocks to deeper
blocks directly. The number of parameters only increase
linearly rather than quadratically in the regular DenseNet [24].
Even with much fewer network parameters, the dense con-
nection strategy still shows advantages. (3) The experiments
on various multi-contrast MRI datasets show the proposed
DISN model achieves state-of-the-art performance compared
with both single-contrast and multi-contrast MRI methods in
imaging quality and speed. The benefit brought by improved
reconstruction quality of DISN on posterior medical image
analysis is also demonstrated by experiments. (4) The DISN
model is robust to the misregistration errors which are common
in real MRI acquistion because of large model capacity.

The rest of this paper is organized as follows: Section II
summarizes the related work in the field of multi-contrast
MRI reconstruction. Section III presents the basic DIRN and
DFSN models as well as the proposed DISN model. Section IV
compares the different deep learning models and reports the
experimental results on various multi-contrast MRI datasets
including SRI24 [23], MRBrainS13 [25] and NeoBrainS12
[26]. Section V discusses the network size, testing running
time, misregistration environment.

II. RELATED WORK ON MULTI-CONTRAST CS-MRI

Previous work has exploited the structural correlations in
multi-contrast MRI using classic Bayesian and sparse opti-
mization approaches. Suppose we aim at reconstructing L
multi-contrast MRI images, for example L = 3 when PD,
T1 and T2 MRI are used. One can formulate this problem as

X = arg min
X

L∑

i=1

λi

2

∥∥Fui xi − yi
∥∥2

2 + ρ (X) , (1)

where xi ∈ C
N×1 denotes the i th (1 ≤ i ≤ L) contrast of the

complex-valued MR image to be reconstructed and X indicates
the set of all xi . Fui ∈ CM×N denotes the i th under-sampled
Fourier matrix and yi ∈ CM×1 (M < N) denotes the
i th k-space measurements. Note that in multi-contrast MRI,
it is common to under-sample all the multi-contrast MRI
data using different under-sampling masks with the same
under-sampling ratio. The first term is the data fidelity unit
ensuring consistency between the reconstructed image and
measurements. ρ (X) encodes a regularization term for the
MRI contrast images.

Two notable approaches to multi-contrast CS-MRI with
which we compare are Bayesian Compressed Sensing by
Bilgic et al. [27] and FCSA-MT by Huang et al. [28].
Bilgic et al. base their approach on a modification to Bayesian
compressed sensing (BCS) [29] that exploits structural sim-
ilarity across contrasts. To exploit the structure similarity,
the authors cast the problem in the gradient domain, where
the prior of the vertical and horizontal gradients of the
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Fig. 2. The network architecture of the proposed DIRN, DFSN, and DISN models for multi-contrast CS-MRI inversion.

multi-contrast MRIs are set to zero-mean Gaussian distri-
butions. A least squared problem can be solved to yield
the reconstruction by combining the horizontal and vertical
gradients with the k-space data fidelity. The major drawback
is running time; requiring about 26 hours to process a set of
multi-contrast MRI, the initial algorithm is impracticable in
real scenarios, although the authors did later accelerate the
model somewhat at the expense of performance [30].

Huang et al. extended the FCSA [7], [8] algorithm from
single-contrast to multi-contrast MRI (FCSA-MT) [28], [31].
The FCSA-MT model is based on the observations that the
variance of the gradients should be similar in the same spatial
positions across MRI, and wavelet coefficients should have
similar non-zero support in the same anatomical sections.
The FCSA-MT model achieves this through a linear model
based on squared error, group sparsity and total variation
minimization. Misregistration settings can also lead to drastic
performance reduction since the group sparsity is no longer
accurately aligned. Li et al. later accelerated FCSA-MT using
fast conditioning [32].

III. A DEEP INFORMATION SHARING NETWORK (DISN)

We propose a deep learning model that takes a set of
sub-sampled Fourier k-space measurements at multiple con-
trasts, y1, . . . , yL , and outputs the corresponding reconstructed
images at each contrast x1, . . . , xL . The model learns how to
exploit structural similarities across contrasts to produce an
output that is significantly better than could be obtained via L
independent inversion algorithms. Because this represents the

first deep learning approach to the problem, we experiment
with three different deep structures, but the best-performing
structure is a “deep information sharing network” (DISN). This
network consists of cascaded blocks with dense connections.
Within each block, we adopt a feature sharing unit combined
with a data fidelity unit. Below, we describe the feature sharing
and data fidelity units, and how they are combined to form the
inference block. We then discuss how the blocks are densely
connected.

A. Feature Sharing Unit

An intuitive approach to multi-contrast CS-MRI inversion
is to simply reconstruct them separately with a deep learning
model, for example as shown in Figure 2(a). We call this a
deep independent reconstruction network (DIRN). The DIRN
model shown is made up of several parallel subnetworks. Here
we plot 3 subnetworks for PD, T1 and T2 contrasts. The
architecture of each subnetwork is the state-of-art DC-CNN
architecture [20]. If each subnetwork consists of N inference
blocks, we call it DIRN-NB. (All the subnetworks share the
same number of blocks.) Here we adopt 5 blocks, DIRN-5B.
Each building block consists of 4 convolutional layers with
global shortcut and a data fidelity unit (we will discuss this
later) as shown in Figure 2(a). The global shortcut uses a skip
connection architecture in the feature sharing unit within a
block to help stabilize the training [20]. In each block, the first
convolutional layer is used to map the MRI to multiple feature
maps and the last convolutional layer integrates the feature
maps into a single reconstruction in the residual domain.
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Fig. 3. The feature sharing unit.

Leaky ReLU is used as an activation function, except for the
last convolutional layer where the identity mapping is used.
There are no interactions among these subnetworks. In such a
deep learning network setting, large amounts of MRI data is
used to learn the complex patterns of each multi-contrast MRI
separately.

Although DIRN may provide a powerful modeling ability
for each contrast of the MRI, the number of network parame-
ters triples because there are three subnetworks. As showed
in Figure 1, structural similarity should be exploited in deep
neural network architectures, both to achieve better reconstruc-
tion and also with the aim of reducing parameters. Hence
we also consider a deep feature sharing network (DFSN) as
shown in Figure 2(b). Similar to DIRN, the DFSN consists
of 5 cascaded inference blocks, DFSN-5B, while each block
is made up of a feature sharing unit and a data fidelity unit.
Multi-contrast MRI such as T1, T2 and PD zero-filled MR
magnitude images are input to the DFSN in a stack as the
multi-channel input. The DFSN network can therefore recon-
struct multi-contrast MRI data simultaneously. We show the
feature sharing unit in Figure 3. In traditional multi-contrast
MRI methods, the structural similarity is modeled in the
finite difference domain; instead we adopt residual learning
in the feature sharing unit. Similarly, each feature sharing
unit contains 4 convolutional layers with the same number of
filters as the single subnetwork of DIRN in each layer and all
activation functions are Leaky ReLU, except for the identity
mapping in the last layer.

1) Discussion: The proposed feature sharing strategy has a
similar motivation to traditional sparse representation methods.
In each feature sharing unit, we denote the residuals for the
j th (1 ≤ j ≤ L) contrast MRI as r j . As mentioned, for the
last convolutional layer in the unit, the activation function is
set to the identity function, thus r j = ∑

i fiwi j , where the fi

denotes the i th feature map for the last convolutional layer in
the unit, and wi j denotes the corresponding kernel in Toeplitz
matrix form. In the classic dictionary learning formulation,
the signal can be approximated as s = Dα, or equivalently
s = ∑

i diαi . di is the i th column of the dictionary D and αi

is the i th entry of the sparse coefficients α.
In previous work such as the ScSR model for image

super-resolution [33], [34], the patches of high and low
resolution images share the same sparse coefficients α j yet
different dictionaries Dh and Dl . In such setting, the corre-
lation between low and high resolution image patches may
be overlooked. In the DFSN model, something similar to

Fig. 4. The feature maps from the last convolutional layer in the feature
sharing unit within the last block of the DFSN-5B model.

high-resolution and low-resolution dictionaries are inferred
simultaneously in the form of fi with the representation
coefficients wi j via a large dataset. In Figure 4, we show the
feature maps fi (1 ≤ i ≤ 32) for the last convolutional layer
in the feature sharing unit of the 5th block with the DFSN-
5 model. We observe that they contain enough diversity to
represent the structures in PD, T1 and T2 MRI, thus validating
the feature sharing strategy.

B. Data Fidelity Unit

We also use the data fidelity unit from [20] within each
block to reduce bias by enforcing more accurate values on the
sampled positions in k-space. Following Equation 1, we solve
the following objective function in the data fidelity unit for
each contrast,

xi = arg min
xi

λi

2

∥∥Fui xi − yi
∥∥2

2 + 1

2

∥∥xi − xini

∥∥2
2 , (2)

where xini is the input to the data fidelity unit and λi is the
regularization parameter. To enforce consistency between the
reconstruction and the measurements yi , we set λi to a large
value, e.g., 106, which only penalizes deviation from these
measured locations. The second term can be viewed as the
prior guess, where the input image xini is the output by the
feature sharing unit. We observe that these fidelity units are
calculated independently for each contrast, but each input xini

is constructed by sharing information across contrasts in the
deep learning model.

We can simplify by working in the Fourier domain, after
which the solution using element-wise division is

xi = F H λF F H
ui

yi + Fxini

λF F H
ui

Fui F H + I
, (3)

where the term F F H
ui

yi is the Fourier transform of the
zero-filled reconstruction, the term F F H

ui
Fui F H is a diagonal

matrix with ones at the sampled locations and zeros otherwise.
Calling the feed forward function for this unit g

(
xini ; yi ; λ

)
,

the relevant gradient for model training is

∂g

∂xini
T

= I

λF F H
ui

Fui F H + I
. (4)

We will also study the impact of using different norm regu-
larization on the network performance in future work [35].
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Fig. 5. The intermediate reconstructions and their error maps from each
block, as well as the error differential maps.

C. Dense Connections

We proposed DFSN to share information across contrasts
of the MRI. We visualize the intermediate reconstructions of
T2 brain MRI by the inference blocks of DFSN-5B model
in Figure 5. The test data is under-sampled with 1D 20%
Cartesian mask given in Figure 7. We observe that the outputs
of the inference blocks improve as the network becomes
deeper. To further analyze the reconstruction quality of each
block, we conduct the following experiments:

We define the pixel-wise absolute reconstruction error map
as ei = ∣∣xi − x f s

∣∣ where xi represents the output produced
by the i th block and x f s the full-sampled ground truth MRI.
We plot the ei maps of the T2 intermediate reconstruction of
the DFSN-5B model from the first to the fifth block in the third
row of Figure 5. In the fourth and fifth rows, we show positive
error map differences of shallow nth blocks with deep mth
blocks defined as dm−n = (em − en)+ (n < m) where the
(·)+ represents only retaining the nonnegative values, meaning
we focus on the positions where the lower block achieves high
reconstruction accuracy. As the blocks get deeper, we observe
that the intermediate reconstructions from lower blocks show

less advantages. We conclude that intermediate reconstruc-
tions from lower blocks contain valuable information lost to
deeper levels.

These observations can also be interpreted from the view-
point of “information bottleneck” theory [36]–[38]. In this
theory, deep neural networks process the information flow by
“squeezeing” it out through a bottleneck to remove the irrel-
evant noisy details and only retain the features most relevant
for high-level abstraction. In our case, noisier artifacts due
to under-sampling are reduced with deeper cascaded blocks.
However, as a side effect the structural details are at risk of
being eliminated.

Motivated by this analysis, we densely connect the inference
blocks in DFSN and propose a deep information sharing net-
work (DISN). In Figure 2(c), we show the network architecture
of the DISN-5B model. Information sharing is performed in
two ways: (1) the information between the multi-contrast MRI
is shared via the feature sharing unit, and (2) the information
in the deeper inference blocks is shared by dense connections
using concatenations. Each block in DISN receives the output
from all previous blocks as its input. In the recent work called
Semi Parallel Deep Neural Network (SPDNN) model [39],
a parallel network with different architectures is used and
merged into a single network. With the SPDNN idea applied
on every block in the DFSN model, the resulting network
architecture leads to our proposed DISN model.

As with DenseNet [24], where the feature maps are densely
fed to deeper layers by concatenation, the dimension of the
channels in deeper layers may explode quadratically, limiting
the depth of the model. Motivated by DenseNet and the similar
MemNet [40], DISN is different in that only the intermediate
reconstructed MRI images are concatenated rather than the
large number of feature maps. As a consequence, the dimen-
sionality only increases linearly in the channel according to
the number of contrasts.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on three multi-contrast MRI
datasets: the SRI24 atlas [23], MRBrainS13 benchmark [25]
and NeoBrainS12 benchmark [26]. We train separate networks
of the training data of each dataset and test on their respective
testing data.

1) SRI24 Atlas: The multi-contrast brain MRI atlas data
was obtained on a 3.0T GE scanner with 8-channel head coil
with three different contrast setting: For T1-weighted MRI
data: 3D axial IR-prep SPoiled Gradient Recalled (SPGR),
TR = 6.5ms, TE = 1.54ms, number of slices = 124,
slice thickness = 1.25mm. For T2-weighted (late echo) and
PD-weighted (early echo) MRI data: 2D axial dual-echo fast
spin echo (FSE), TR = 10s, TE = 14/98ms, number of
slices = 62, slice thickness = 2.5mm. The field-of-view
covers a region of 240 × 240mm with resolution 256 × 256
pixels. The SRI24 dataset contains 407 T1w-T2w-PD MRI
training pairs. We randomly select 36 multi-contrast MRI data
pairs as test data, while the others are used for training.
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Fig. 6. The performance of DIRN-5B, DFSN-5B, DFSN-5B with 64 feature maps and DISN-5B on all 36 test MRI in SRI24 datasets (x-axis).

2) MRBrainS: Twenty fully annotated multi-contrast
(T1-weighted, T1-weighted inversion recovery and
T2-FLAIR) 3T MRI brain scans with the size 240×240
are provided in the Grand Challenge on MR Brain Image
Segmentation (MRBrainS) workshop at MICCAI2013.
The voxel size of T1, T1-IR and T2-FLAIR MRI is
0.958mm×0.958mm×3.0mm, 0.958mm×0.958mm×3.0mm
and 0.958mm×0.958mm×3.0mm respectively. These scans
have been acquired at the University Medical Center Utrecht
from patients with diabetes and matched controls with
increased cardiovascular risk with varying degrees of atrophy
and white matter lesions (age > 50). These abnormalities
have different appearances in different contrasts. The 20 scans
contains 320 pairs of multi-contrast MRI data in total,
we randomly select 80% of the slices for training and the
others for testing.

3) NeoBrainS: Unlike MRBrainS, which is acquired on the
adult, the grand challenge in MICCAI2012 called Neonatal
Brain Segmentation (NeoBrainS) provides the multi-contrast
(T1-weighted and T2-weighted) MRI scans of neonatal brains.
All 7 scans containing 175 multi-contrast MRI data pairs of
size 512 × 512 are acquired using a Philips 3T system at
the University Medical Center Utrecht. The detailed imaging
parameters can be found in [26]. We also randomly select 80%
of the slices as training datasets and 20% as testing datasets.

4) Loss Function: The loss function for DIRN, DFSN and
DISN is

L
(
x z f

i , x f s
i

) = 1

3

∑L

i=1

∥∥x f s
i − fi

(
x z f

i ; θi
)∥∥2

2 (5)

where xz f
i and x f s

i are zero-filled and fully-sampled magnitude
MRI, respectively, for the i th contrast. The θi represents the
network parameters for each subnetwork for DIRN, while in
DFSN and DISN, they are incorporated in the single feature
sharing unit.

5) Implementation: For training, we learn our models using
TensorFlow for the Python environment on an NVIDIA
Geforce GTX 1080Ti board with 11GB GPU memory and
Intel Xeon CPU E5-2683 at 2.00GHz. For each block of the
feature sharing unit, we use 4 convolutional layers followed
by Leaky ReLU activation functions with 0.2 negative slope.
For each convolutional layer, we obtain 32 shared feature maps
except for the first and last convolutional layer, where 3 feature
maps are used for the contrast residuals. These settings are
applied to both DFSN and DISN. For the DIRN model, the first
and last convolutional layer in the inference block has only
one feature map since the 3 contrasts are reconstructed using
3 different deep learning networks. The kernel size is set to
3 × 3 and padding is used to keep the size of feature maps
unchanged. We apply Xavier initialization for all models and
train for 40000 iterations using ADAM. We select the initial
learning rate to be 0.0005, the first-order momentum to be
0.9 and the second momentum to be 0.999. Each mini-batch
contains 4 whole MRI data pairs. We use whole MRI instead
of cropped patches as input since the data fidelity unit requires
the entire under-sampled k-space data. We do not use batch
normalization in our model.

B. Training and parameter details

1) Data Augmentation: We use data augmentation on
the entire training set of SRI24 Atlas datasets and
MRBrainS13 benchmark to avoid overfitting. We use horizon-
tal and vertical flips on each training data, thus tripling the
total number of training data.

C. Deep Learning Model Comparison

We compare DIRN, DFSN and DISN on the SRI24 atlas
datasets to check the utility of feature sharing and dense
connection strategies. In Figure 6, we show the network
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Fig. 7. The reconstruction results: the first row is the fully-sampled MRI
with different 1D Cartesian 20% masks. From the second to eighth rows we
show BCS, PANO, GBRWT, FCSA-MT, DIRN-5B, DFSN-5B and DISN-5B
on a testing multi-contrast MRI data in SRI24 datasets. From left to right,
each row contains the PD, T1 and T2 reconstructions and error images. The
display of the error maps range from 0 to 0.1.

performance of DIRN-5B, DFSN-5B and DISN-5B on test
data (indexing has been permuted). We use the under-sampling
pattern in Figure 7. Compared with DIRN, DFSN shows the
benefit of feature sharing, while DISN has further improve-
ment by exploiting information across depths through dense
connections. The number of parameters of DFSN-5B is 101K ,
far fewer than DIRN-5B (286K ), while DISN-5B also has
slightly more parameters (106K ) because of extra kernels used
in the dense connections. We also ran the experiment with
64 feature maps for DFSN-5B, resulting in 387K parameters
and found that DISN-5B still achieves higher reconstruction
quality with 32 feature maps. In Figure 6 we show all results
for 32 maps and one result for 64 maps.

D. Model Comparisons on the SRI24 Datasets

On the SRI24 dataset, we compare the proposed DISN-5B
model and its more basic versions DIRN-5B and DFSN-5B
model with single-contrast MRI methods PANO [10], GBRWT
[12] and state-of-the-art multi-contrast methods, such as BCS
[27] and FCSA-MT [31], using three different 1D Cartesian
masks with the same sampling ratio of 20%. The parameter
setting of the non-deep optimization models has been tuned to
their best values. The reconstructions and error residual images

Fig. 8. The PSNR and SSIM of single- and multi-contrast CS-MRI inversion
algorithms averaged over the 36 test images under different 1D Cartesian
20% masks. Deep learning models clearly outperform in PSNR due to their
L2 minimization objective function. The structural similarity (SSIM) measure
is more competitive.

Fig. 9. Reconstruction results for comparison: the first row is the
fully-sampled MRI with different 2D random 10% masks. From the second
row to fifth row, we show FCSA-MT, DIRN-5B, DFSN-5B and DISN-5B on
a multi-contrast MRI test data from the SRI24 dataset. From left to right are
the PD, T1 and T2 reconstructions respectively. The display of the error maps
range from 0 to 0.1

are shown in Figure 7. We see that the visual quality of DISN
outperforms other methods, providing better preservation for
structural details. This is supported by objective quantitative
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Fig. 10. In the first row (T1 contrast), second row (T1-IR contrast), and third row (T2-FLAIR contrast), we show the MR images of FCSA-MT, GBRWT,
DIRN-5B, DFSN-5B, DISN-5B and fully-sampled from left to right on a multi-contrast MRI test data from the MRBrainS benchmark. In the last three rows,
we show the corresponding reconstruction error maps. The error display ranges from 0 to 0.15.

measures of PSNR and SSIM, which we show in Figures 8(a)
and 8(b). We find that a plain deep learning model like
DIRN and DFSN already achieves good performance on
the task, while the proposed DISN model achieves the best
performance. We further test DISN using three different 2D
random masks with sampling ratio of 10%, and compare with
FCSA-MT, DIRN and DFSN. These reconstruction results
are shown in Figure 9. The experiment supports that DISN
generalizes well to 2D random sampling pattern with lower
under-sampling ratios.

E. Model Comparisons on the MRBrainS Datasets

The standard scans in the SRI atlas contain no lesions of
the brain. Therefore, we also test our proposed model on
the multi-contrast MRI dataset MRBrainS, where the scans
were acquired on patients with varying degree of white matter
lesions (WML). We use 3 different 1D 20% Cartesian masks
for under-sampling, as shown in Figure 7.

In Table I we observe that the proposed DISN-5B still out-
performs the comparison algorithms, followed by DFSN-5B.

We show the reconstructions on a representative multi-contrast
test MRI in Figure 10. From these experiments, we observe
that DISN model still works well in more complicated
and diverse multi-contrast MRI settings. The deep neural
network we use is flexible enough to model the struc-
tural similarities while still distinguishing differences across
multi-contrast MRI, especially within the abnormalities. For
example, the white matter lesions regions are better recovered
using the proposed DISN model, as shown in Table I, provid-
ing more reliable diagnostic information. In Figure 11, we plot
the averaged PSNR and SSIM curves on the test data from the
MRBrainS benchmark with different under-sampling ratios.
These experiments results give evidence that the proposed
DISN is robust to different under-sampling ratios.

The MRI data of MRBrainS are hand-annotated with seg-
mentation labels. We thus can test the MRI reconstructed
by various CS-MRI models as inputs to the state-of-the-art
medical image segmentation model called U-Net [41] (with
pixel-wise cross-entropy as loss function). The U-Net model
is trained on fully-sampled MRI and label pairs. We adopt
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TABLE I

AVERAGE PSNR | SSIM OF CS-MRI METHODS ON TEST DATA. WE ALSO GIVE THE EVALUATION INDEX FOR THE REGIONS OF WML

TABLE II

DICE COEFFICIENTS USING THE U-NET SEGMENTATION NETWORK ON THE RECONSTRUCTED T2-CONTRAST MRI. THE SEGMENTED TISSUES INCLUDE

GRAY MATTER (GM), WHITE MATTER (WM) AND CEREBROSPINAL FLUID (CSF). DISN-5B BEST APPROXIMATES THE FULLY-SAMPLED IMAGE

the widely-used Dice Coefficients (DC) as the quantitative
measure to evaluate segmentation quality. These DC results
are shown in Table II averaged over the test data (DC
index is given in percentage with higher score means better
segmentation). Also, we show the segmentation comparisons
in Figure 12. We observe that the better reconstruction of
DISN leads to a more accurate segmentation, which is near
the upper bound performance of the segmentation produced by
U-Net on the fully-sampled MRI. The proposed multi-contrast
DISN model can thus have significant benefits in downstream
medical image analysis tasks.

F. Model Comparisons on the NeoBrainS Datasets

In addition to the multi-contrast MRBrainS benchmark data
acquired from patients over 50 years old, we also test on the
neonatal brain MRI in the NeoBrainS benchmark. Neonatal
brains grow rapidly and develop a wide range of cognitive
and motor functions, which are critical factors in many
neurodevelopmental and neuropsychiatric disorders, such as
schizophrenia and autism. DIRN-5B, DFSN-5B and DISN-5B
are trained and tested on the training datasets in NeoBrainS
benchmark with a 10% Cartesian under-sampling mask of the
size 512 × 512. We show the reconstructed MRI images of
DIRN-5B, DFSN-5B and DISN-BB and their corresponding
error maps in Figure 13. We observe that DISN-5B again
achieves the optimal reconstruction quality. In Figure 14,
we give the averaged PSNR and SSIM evaluation of the three
compared deep learning models, which is consistent with the
visual assessments.

V. DISCUSSION

The experimental results on three different multi-contrast
MRI datasets support that the proposed DISN model general-
izes well to healthy adult brain MRI, brain MRI datasets with

pathological abnormalities and neonatal brain MRI, all under
different under-sampling patterns and under-sampling ratios.
In this section, we provide additional performance details and
analysis of our model.

A. Converge Analysis

In Figure 15 we show the training loss curve on the
SRI24 atlas dataset as a function of iteration using the mask
from Figure 7. We observe that the convergence for these deep
learning models is relatively fast, and DISN gives a network
with best training loss.

B. Network Size

We also show DISN model performance by adjusting the
number of cascaded blocks from 1 to 11 and give these
results in Figure 16 for the SRI24 dataset using 1D Cartesian
20% under-sampling. We find that as the number of blocks
increases, the network performance steadily increase with
smaller marginal improvement before finally reach conver-
gence, while the DISN-5B model already achieves state-of-
the-art performance in multi-contrast CS-MRI reconstruction.

C. Testing Running Time

In Table III we compare the running times for different
models on test time data using the SRI24 dataset. For the
optimization-based single- and multi-contrast MRI methods,
additional optimizations are required on test images, making
processing of a new MRI more time-consuming. On the other
hand, for DIRN-5B, DFSN-5B and DISN-5B, the reconstruc-
tion is much faster because the model is feed-forward and no
iterations are required.
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Fig. 11. The averaged PSNR and SSIM comparisons of the FCSA-MT,
GBRWT, DIRN-5B, DFSN-5B and DISN-5B reconstruction on 10%, 20%
and 30% 1D Cartesian under-sampling patterns. All the three contrast MRI
(T1, T1-IR and T2-FLAIR) are shown. The proposed DISN model achieves
the best performance.

TABLE III

TEST RUNTIME COMPARISON (DEEP MODELS USE 5 BLOCKS)

D. Misregistration Environment

The multi-contrast MRI datasets used in this paper have
already undergone registration, i.e., been made to overlap as
well as possible. However, in real MRI scenarios, assuming
such accurate registration is not always realistic. For tradi-
tional optimization-based multi-contrast MRI methods such as
FCSA-MT, this registration must be strictly enforced because
of the rigid sparsity assumption in these models. However, for
the proposed DISN the trained network is quite robust to the
shifts that are normal in the real-world MRI scanning process.

In this experiment, we take the SRI24 datasets as an
example and train the DISN-5B model with randomly shifted
MRI data pairs in the small range within 2 pixels in all
directions. We then test the DISN model on the position-fixed
PD, T1 and position-shifted T2 data in the test datasets. The
T2 data is also shifted by up to 2 pixels in all directions.

Fig. 12. Post-reconstruction segmentation results produced by state-
of-the-art U-Net segmentation model. Segmentation performed on outputs
from single-contrast CS-MRI methods (PANO, GBRWT) and multi-contrast
CS-MRI methods (DIRN-5B, DFSN-5B and DISN-5B).

Fig. 13. In the first row (T1 contrast), second row (T2 contrast), we show
the MR images of DIRN-5B, DFSN-5B, DISN-5B and full-sampled from left
to right on a testing multi-contrast MRI data in NeoBrain benchmark. In the
last three rows, we show the corresponding reconstruction error maps. The
error display ranges from 0 to 0.1.

(We use the under-sampling masks shown in Figure 7.) Since
FCSA-MT is learned in situ, there is no retraining required
using shifted examples as is necessary with DISN. However,
in the comparison between re-trained DISN and FCSA-MT,
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Fig. 14. The PSNR and SSIM of deep multi-contrast CS-MRI inversion
algorithms averaged over the test images in the NeoBrainS benchmark.

Fig. 15. The training loss function of DIRN-5B, DFSN-5B and DISN-5B.

we observed that DISN is more robust to these pixel shifts.
This is shown for the T2 reconstruction as a function of pixel
shift in Figure 17.

We observe that FCSA-MT with well-registered MRI
pairs outperforms GBRWT, which is the state-of-the-art
single-contrast CS-MRI method run only on the shifted
T2 data, while the performance of FCSA-MT decreases

Fig. 16. PSNR curves as a function of the number of blocks.

Fig. 17. DISN is robust to non-registration environments compared with
conventional single-contrast and multi-contrast MRI. The bottom plane indi-
cates the degree of the pixel shift in each direction, while the vertical axis
indicates the respective model performance in PSNR.

dramatically as the shift increases. The DISN model
consistently outperforms FCSA-MT and GBRWT regardless
of the shift. This helps show that DISN has greater application
potential in real-world clinical MRI scenarios.

VI. CONCLUSION

We have proposed the first deep learning approaches to the
multi-contrast CS-MRI inversion problem. The model consists
of densely cascaded inference blocks each containing a feature
sharing unit and data fidelity unit. The feature sharing strategy
can significantly reduce the number of parameters while still
obtaining excellent model performance by virtue of the
structural similarity across the multiple contrasts. The dense
connection between blocks helps to share information across
the network in a computationally efficient way. Experiments
on three multi-contrast MRI datasets demonstrate that DISN
achieves state-of-the-art performance in imaging quality and
speed. Furthermore, its robustness to the non-registration
environment shows potential for real multi-contrast MRI
application.
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