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ABSTRACT

Due to the effect of weak illumination, person images cap-
tured by surveillance cameras usually contain various degra-
dations such as color shift, low contrast and noise. These
degradations result in severe discriminant information loss,
which makes the person re-identification (re-id) more chal-
lenging. However, existing person re-identification approaches
are designed based on the assumption that the pedestrians
images are under well lighting conditions, which is impracti-
cal in real-world scenarios. Inspired by the Retinex theory,
we propose a illumination-invariant person re-identification
framework which is able to simultaneously achieve Retinex
illumination decomposition and person re-identification. We
first verify that directly using weak illuminated images can
greatly reduce the performance of person re-id. We then de-
sign a bottom-up attention network to remove the effect of
weak illumination and obtain the enhanced image without
introducing over-enhancement. To effectively connect low-
level and high-level vision tasks, a joint training strategy
is further introduced to boost the performance of person
re-id under weak illumination conditions. Experiments have
demonstrated the advantages of our method on benchmarks
with severe lighting changes and low light conditions.
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Figure 1: Person images under different illumination
conditions.

1 INTRODUCTION

Recently, due to the powerful representation learning capabili-
ties of deep convolutional neural networks (CNNs), significant
progress has been achieved in person re-identification (re-id).
To cope with the challenges caused by view variations, pose
variations and occlusion, existing methods generally focus
on extracting and matching local features of pedestrians
[11, 28, 33, 35]. However, these methods rarely consider the
influence of illumination variations. The main reason may be
that most publicly available person re-id benchmarks, such as
Market-1501 [36] and DukeMTMC-reID [38], were collected
from limited areas within fixed time period. Therefore, the
illumination diversity is not taken into consideration. While
in real-world scenarios, illumination is a non-negligible inter-
ference factor. As shown in Figure 1, images with the same
identity have different appearances due to various lighting
conditions. Especially, weak illuminated images contain col-
or shift, low contrast and noises. These degradations make
person re-id task extremely difficult even for human beings.

A straightforward solution to this specific illumination
problem is to use larger datasets that cover as many lighting
conditions as possible. However, this solution is expensive
and unpractical to label the massive surveillance videos to
support supervised learning [24]. An alternative solution
is to utilize data augmentation techniques, such as color
jitter and gamma correction. To better simulate the real-
world lighting conditions, Bak et al. [2] collected varieties
of High Dynamic Range (HDR) environment maps for the
rendering of virtual humans and built a new synthetic dataset
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SyRI. The above mentioned methods can help the model
learn illumination-invariant features in a data-driven fashion.
However, the network architecture designed in this way may
be non-optimal.

Different from existing methods, we eliminate the effect
of illumination changes by explicitly decomposing the il-
lumination map. Both the intrinsic pedestrian image and
illumination-invariant features can be simultaneously ob-
tained to improve the re-id performance. To achieve the
above goal, it is natural to estimate illumination first. It is
well known that estimating the illumination from single image
is an ill-posed problem, which requires some priors and con-
straints to handle it. For instance, Retinex-based algorithms
are required to satisfy the Lambertian scene assumption,
and the illumination map should be piece-wise smooth. In
previous works [7, 27, 30], Retinex theory was widely used
for illumination estimation and low light enhancement. By
adopting CNNs in a data-driven way, there are many meth-
ods [27, 30] achieved competitive results compared to other
non-deep learning methods.

However, existing methods [7, 27, 30] of illumination esti-
mation and low-light enhancement mainly focus on improv-
ing subjective visual quality, rather than serving subsequent
high-level vision tasks. To tackle this issue, we first design a
lightweight illumination estimation network to enhance the
pedestrian images. Then a bottom-up attention mechanism is
proposed to suppress the over-enhancement in extreme dark
areas. To further combine the two incompatible low-level and
high-level vision tasks, i.e., illumination estimation and per-
son re-id, we intentionally build a novel network framework
with a joint training strategy. Experimental results show that
our approach have a substantial superiority compared to
other existing methods in low-light re-id.

In summary, our contributions are as follow:

∙ We specifically build new low-light image datasets for
the person re-id community. Based on our datasets, we
verify that weak illumination can actually reduce the
re-id performance.

∙ To obtain effective illumination-invariant features for
re-id, we design a novel bottom-up attention mecha-
nism to avoid the over-enhancement that usually con-
tained in dark areas.

∙ We propose a novel CNNs framework for boosting
the performance of person re-id under weak illumi-
nation conditions. Besides, a joint training strategy
is introduced to effectively connect low-light image
enhancement and person re-id tasks.

2 RELATED WORK

In recent years, person re-id, including image-based re-id
[18, 19, 28] and video based re-id [4, 17], has received a lot
of attention from both academic and industrial communities.
The main difficulty in person re-id is how to learn a robust
person feature representation to resist the interference caused
by variations in views, pose, occlusion, illumination and
so on. Inspired by existing low-light image enhancement

methods, we focus on the illumination issue in the re-id task
in this paper. In the following subsections, we will briefly
review recent advances in person re-identification and low-
light image enhancement.

2.1 Person Re-Identification

Most person re-id methods focus on reducing the adverse
effects of various pose and view by combining global and
local features. Specifically, the methods of modeling local fea-
tures generally include explicitly extracting regions of body
parts [11, 34], attention-based implicit local feature learning
[15, 20, 35], heuristic pre-defined image partitioning, such as
grid [1] and horizontal stride [28, 33], which usually accom-
panied by the steps of inter-area alignment [16, 33]. Due to
coarse bounding box part detection, Kalayeh et al. [11] use
semantic parsing network to perform pixel-level body regions
extraction. Inspired by the attention mechanism, Zhao et
al. [35] learn part-aligned local feature representations by
utilizing the similarity between pedestrians without addi-
tional supervision information. Sun et al. [28] extract the
part-level feature by dividing horizontal stripes. Zhang et al.
[33] find that the alignment of local features according to the
shortest path, which is calculated by a dynamic programming
method. Additionally, Ge et al. [6] propose feature distill-
ing generative adversarial network to learn pose-unrelated
person representations without extra auxiliary pose infor-
mation during inference. Despite the significant progress in
re-id, above mentioned works mainly focus on addressing the
feature matching problem of high-level semantic information
while ignoring the matching of information on the underlying
visual perception. However, in real-world scenarios, some un-
derlying visual factors, such as illumination, resolution and
weather, can also have a seriously negative impact on the
person re-id task.

To the best of our knowledge, there are few re-id works
focus on addressing the issue of illumination variations. To
enrich the illumination diversity of training samples, Bak et
al. [2] synthesize data from a variety of lighting conditions and
use cycleGAN [39] to perform cross-domain transformations.
Similar to the illumination issue, cross-resolution is another
common problem [5, 9, 29] in real-world re-id. Eliminating
the influence of illumination and cross-resolution can be
considered as low-level vision tasks. In this work, we only
focus on the illumination problem.

2.2 Low-Light Image Enhancement

In general, low-light image enhancement methods can be
mainly categorized into three types: gamma correction-based,
histogram equalization-based and Retinex-based. The first
two kinds of methods only conduct intuitive and straight-
forward pixel-level mapping, while Retinex-based methods
perform more image analysis and processing. The Retinex
theory [13], which was proposed by Land in 1977, is first-
ly used for color constancy. Based on the simplification of
Retinex, an observed image can be modeled as the pixel-wise
multiplication of the illumination and the reflectance.
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With the rapid development of deep learning in the comput-
er vision community, a series of deep CNNs-based low-light
image enhancement methods have been proposed. Lore et
al. [21] propose a data-driven approach to simultaneously
achieve low-light image enhancement and denoising. Lv et al.
[22] implement a multi-branch network structure in which
features from different levels are combined to extract rich
and detailed information. In addition, deep neural network-
s based on Retinex theory have also appeared. Wei et al.
[31] design the loss function for estimating reflectance and
illumination from single input image. In [27], the classical
Multi-scale Retinex algorithm is considered as a feed-forward
convolutional neural network with different Gaussian convo-
lution kernels, then MSR-Net is proposed to directly learn
an end-to-end mapping from dark images to bright versions.

3 METHODOLOGY

In this section, we first introduce our Retinex decomposi-
tion net, the basic part of our approach. Then a bottom-
up attention mechanism is well designed to solve the over-
enhancement in dark areas. Moreover, a illumination-invariant
feature learning framework is further proposed to connect
Retinex decomposition and person re-id.

3.1 Retinex Decomposition Net

As illustrated in Figure 2, our Retinex decomposition network
contains two sub-networks: Light Estimation Net (LE-
Net) and Light Decomposition Net (LD-Net). The former
is used to produce the illumination map of the original image,
while the later aims to generate the reflectance.

Network Architecture. To build a lightweight archi-
tecture for practical applications, we choose the dehazing
AOD-Net [14] as the backbone of our LE-Net and LD-Net.
We modify the AOD-Net to make it suitable for our Retinex
decomposition task. Specifically, for LD-Net, we set the num-
ber of output channel to 1 and use sigmoid as the activation
function. Subsequently, a Gaussian blurring layer is added to
satisfy the priori of the pixel-wise smoothness of the illumi-
nation. For LD-Net, the output channel dimension is set to
3 and Rectified Linear Unit (ReLU) is used as the activation

Figure 2: Retinex Decomposition Net.

𝜎(𝑥) = 1

1+𝑒−𝑎(𝑥−𝑏)

Figure 3: Bottom-Up Attention Module.

function. It is worth mentioning that, unlike Retinex-Net
[30] that simultaneously estimates both illumination and re-
flectance, our method performs Retinex decomposition in a
two-stage manner. This makes our deep model more flexible
and easy to be optimized.

Loss Function. Based on the Lambertian scene assump-
tion, each image pixel S captured by the camera can be
modeled by

𝑆(𝑥, 𝑦) = 𝐿(𝑥, 𝑦)×𝑅(𝑥, 𝑦), (1)

where L and R represent illumination and reflectance, re-
spectively. For person re-id, the reflectance map describes
the intrinsic property that is related to person identity and
should be preserved or restored. The illumination map re-
flects the light conditions of environment, which is usually
considered as an interference factor affecting the performance
of re-identification and thus should be removed.

To effectively train the network, a low-light image is fed
into the network to predict illumination and reflectance,
and its corresponding ground truth is used to calculate the
reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛:

𝐿𝑟𝑒𝑐𝑜𝑛 =
∑︁

𝑖=𝑙𝑜𝑤,𝑔𝑡

∑︁
𝑗=𝑙𝑜𝑤,𝑔𝑡

𝜆𝑖𝑗 ||𝑅𝑖 ∘ 𝐿𝑗 − 𝑆𝑗 ||1, (2)

where ∘ denotes the element-wise multiplication, and the
invariable reflectance loss 𝐿𝑖𝑟 is defined as:

𝐿𝑖𝑟 = ||𝑅𝑙𝑜𝑤 −𝑅𝑔𝑡||1. (3)

The total loss 𝐿 for Retinex decomposition net is:

𝐿 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑖𝑟𝐿𝑖𝑟, (4)

where 𝜆𝑖𝑟 is used to control the consistency of reflectance, as
described in [30].

3.2 Bottom-Up Attention for
Enhancement

Existing Retinex-based methods enhance an image by ad-
justing the estimated illumination. This operation makes the
enhanced image more natural and has a better subjective
visual effect. For person re-id task, however, the appearance
properties of the person itself are more important. There-
fore, we directly choose the reflectance map, which contains
boosted image characteristics, as the enhanced result.
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Figure 4: Framework of our illumination-invariant person re-identification.

However, the over-enhancement issue usually happens in
dark areas where pixel values equal or close to 0. According
to Equation 1, directly calculating R by using L as the
denominator leads to severe distortion and amplified noises.

In fact, since the information is almost lost, there is no
need to enhance these dark areas. Based on this observation,
we introduce a bottom-up attention mechanism to deal with
the over-enhancement problem by not enhancing dark areas.
We design a parameterized sigmoid function, i.e., Equation 5,
to generate the attention map and use it to determine which
areas need to be enhanced.

𝜎(𝑥) =
1

1 + 𝑒−𝑎(𝑥−𝑏)
. (5)

Since a fixed scalar parameter treats all pixels equally,
which reduces the model flexibility for different lighting con-
ditions. Therefore, we use several convolution layers to predict
the parameter b in Equation 5. Consequently, the attention
map, which represents the intensity of the illumination en-
hancement, is obtained by the bottom-up attention module
(Figure 3). Then the illumination map is adjusted by:

𝐿𝑎𝑑𝑗(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)× 𝐿(𝑥, 𝑦)−𝐴(𝑥, 𝑦) + 1, (6)

where 𝐿𝑎𝑑𝑗 denotes the adjusted illumination map, A denotes
the attention map. Finally, we calculate the result E by:

𝐸(𝑥, 𝑦) = 𝑆(𝑥, 𝑦)/𝐿𝑎𝑑𝑗(𝑥, 𝑦). (7)

3.3 Learning Illumination-Invariant
Feature

Again, we emphasize that the motivation of this work is to
improve the performance of person re-id rather than generate
visually pleasing images. Although Retinex-based methods
can obtain the illumination-independent reflectance map, on-
ly pixel-level image processing is performed. As mentioned in
[9], a direct combination of low-level vision and re-id models
may suffer from suboptimal compatibility. This is because

generic-purpose low-level image process methods are designed
to improve visual fidelity rather than the re-id performance.
Therefore, there is still a gap between the low-level and
high-level vision tasks. To further connect the Retinex de-
composition and person re-id, we propose a joint training
framework for learning illumination-invariant features, as
illustrated in Figure 4.

Network Architecture. Our illumination invariant fea-
ture learning framework can be divided into two parts: pixel-
level branch and feature-level branch. For the pixel-level
branch, we perform image enhancement by removing the
illumination map as described in the previous two subsec-
tions. For the feature-level branch, we first remove the last
convolutional layer of the LD-Net, which directly output
32-channel feature maps rather than 3-channel image. Then,
these illumination-independent features are down-sampled
and fed into a SPADE block [23] for further feature transfor-
mation. The obtained features from two branches are then
sent into the weight-shared resnet50, respectively. At the last
layer of resnet50, the feature vectors are concatenated to
perform classification.

Loss Function. The total loss function 𝐿 consists of the
re-id loss 𝐿𝑖𝑑 and the perceptual loss 𝐿𝑝𝑒𝑟,

𝐿 = 𝐿𝑖𝑑 + 𝐿𝑝𝑒𝑟. (8)

For re-id loss, we use the cross-entropy loss for multi-
identity classification. For perceptual loss [10], different from
the general practice of using pre-trained deep classification
networks, i.e., VGG-16, we use the re-id backbone for obtain-
ing both feature extraction and perceptual loss. In this way,
both low-level and high-level constraints can be simultane-
ously taken into consideration during training. This can help
the network learn illumination-invariant and discriminative
features for re-id. Note that there is no extra computational
and memory cost to use this training strategy.
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Specifically, the feature maps from the two branches are
directly used to calculate the perceptual loss,

𝐿𝑗
𝑝𝑒𝑟(�̂�, 𝑥) =

1

𝐶𝑗𝐻𝑗𝑊𝑗
||�̂�𝑗 − 𝑥𝑗 ||22, (9)

where �̂�𝑗 and 𝑥𝑗 denotes the feature maps, which are size of
𝐶𝑗 ×𝐻𝑗 ×𝑊𝑗 , from the 𝑗𝑡ℎ layer of the pixel-level branch
and feature-level branch, respectively.

4 EXPERIMENTS

4.1 Datasets and Evaluation Measures

Datasets. Our evaluation is performed on two real-world
person datasets, i.e., MSMT17 [32] and 3DPeS [3], which have
severe lighting changes. We also adopted two simulated low-
light person datasets which are based on Market-1501 and
DukeMTMC-reID, respectively. Some examples are shown in
Figure 5.

The MSMT17 dataset [32] is collected by the surveil-
lance camera on the campus, including 12 outdoor cameras
and 3 indoor cameras. To cover different time period, four
days with different weather conditions in one month as well
as three hours in the morning, noon and afternoon were se-
lected to collect the raw videos. The whole dataset consists of
32,621 bounding boxes of 1,041 distinct persons for training
and 93,820 bounding boxes of 3,060 persons for testing.

The 3DPeS dataset [3] includes 1,011 images of 192 indi-
viduals captured from 8 outdoor cameras on the campus and
each person has 2 to 26 images. The illumination variations
could be very strong since people were recorded in bright
and shadowy areas over the course of several days.

The low-light Market-1501 (low-light Market) dataset
is based on a publicly available person re-id benchmark,
Market-1501. Market dataset has totally 32,668 images of
1,501 people captured by 5 high-resolution and one low-
resolution camera. During dataset collection, a total of six
cameras are placed in front of a campus supermarket in the
daytime, so the illumination changes are not significant. To
simulate the low-light conditions in the surveillance scene, we
randomly select a process method for each image in the test

(a) Low-light Market-1501 (b) Low-light DukeMTMC-
ReID

Figure 5: Examples of synthetic low-light person
datasets.

(a) Produced by baseline model (b) Produced by our approach

Figure 6: Illustration for the illumination-invariant
features. Top: normal images, bottom: low-light im-
ages.

set, including gamma correction with gamma value randomly
picked from {2, 3, 4} or no processing. Some examples are
shown in Figure 5(a).

The low-light DukeMTMC-reID (low-light Duke) is
built from DukeMTMC-ReID dataset, all images of which
are extracted from the DukeMTMC [26] tracking dataset
collected by 8 high-resolution cameras. Specifically, there are
6,522 images of 702 persons in the training set and 18,750 im-
ages associated to 702 identities in the test set. We randomly
selected the images in the test set for low-light processing,
as for Market-1501.

Evaluation Measures. We evaluate the performance of
different person re-id methods using Cumulative Matching
Characteristic (CMC) curves and mean average precision
(mAP). The standard single-shot setting is performed in our
experiments.

4.2 Training the networks

Our framework integrates multiple vision tasks: Retinex de-
composition, image enhancement and person re-id. We train
our network in a two-stage fashion.

Stage 1: Retinex decomposition. To train our Retinex
decomposition network shown in Figure 2, we synthesize a
large set of low-light images based on the PASCAL VOC
images dataset. The experimental settings are followed by
[22]. Specifically, we use Adam optimiser [12] with learning
rate 10−4 and set mini-batch size to 32, 𝜆𝑖𝑗 to 0.25 and 𝜆𝑖𝑟

to 10−3. The training is finished after 100 epoch. The input
image is resized to 256× 256. All parameters are randomly
initialized by [8].
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(a) normal-light condition (b) low-light condition

Figure 7: Illustration for the activation maps under
different illumination conditions.

(a) normal-light condition (b) low-light condition

Figure 8: Visualization of feature embedding under
different illumination conditions.

Stage 2: Joint training for person re-id. In this stage,
all the parameters in the framework are fine-tuned by the
re-id loss and perceptual loss (Equation 8). Specifically, the
Retinex decomposition network is pre-trained in stage 1 and
the re-id backbone is initialized with ImageNet pre-trained
weights. We use SGD with Nesterov momentum and set the
initial learning rate to 10−2, momentum to 0.9 and mini-batch
size to 32 for re-id backbone. The Retinex decomposition
network is trained by Adam optimiser with 10−5. The rest
of framework are trained by SGD with learning rate 0.1.
The input person image is resized to 288× 144 and random
horizontal flipping is performed.

4.3 Experimental results

In this section, we start with analyzing the effects of weak illu-
mination on person re-identification performance. We see that
a significant negative impact on re-id performance is caused

Table 1: Effect of weak illumination on Market-1501
dataset.

Re-ID methods Illumination condition Rank-1 mAP

ResNet50-IDE Normal 82.5 62.9
ResNet50-IDE Low-light 34.0 9.6

PCB Normal 92.1 77.1
PCB Low-light 48.7 16.8

Table 2: Effect of weak illumination on DukeMTMC-
ReID dataset.

Re-ID methods Illumination condition Rank-1 mAP

ResNet50-IDE Normal 73.6 54.0
ResNet50-IDE Low-light 32.2 11.1

PCB Normal 85.1 70.3
PCB Low-light 48.6 21.1

Table 3: Performance of proposed bottom-up atten-
tion module.

Dataset Model Rank-1 mAP

MSMT17
ResNet50 57.3 29.7

ResNet50-w-Enhance 53.0 27.4
ResNet50-w-Enhance-w-BUatt 60.1 32.7

3DPeS
ResNet50 59.5 50.6

ResNet50-w-Enhance 57.7 50.0
ResNet50-w-Enhance-w-BUatt 60.4 51.6

by weak illumination. Then we evaluate the proposed bottom-
up attention module. Both re-id performance and subjective
visual effects are improved after adding this module. Last,
re-id performance of our joint framework is compared with
other light-enhancement and re-id methods. We also prove
that our framework can be applied to current state-of-the-art
re-id methods to further improve performance.

Illumination-invariant features. To prove that our ap-
proach is able to learn illumination-invariant features, we
compared the features of the last layer. As shown in Figure
6(a), baseline model produced different feature maps by in-
putting different illuminated images. The variation of feature
maps results in the reduction of subsequent re-id performance.
On the contrary, our model is able to produce similar feature
maps under different illumination, as illustrated in Figure
6(b). This indicates that the our approach indeed learned
the illumination-invariant features.

Effect of weak illumination. We use gamma correction
to simulate the low-light conditions and synthesize low-light
person datasets. To explore the effect of weak illumination
on person re-id task, we evaluate the re-id performance by
comparing the baseline results between the low-light datasets
and their corresponding normal versions. We also analyze the
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Table 4: Performance of the joint framework compared to other light enhancement + re-id schemes.

Dataset Re-ID Method Enhance Method top-1 top-5 top-10 top-20 mAP

Low-light Market

ResNet50-IDE - 34.0 48.0 53.6 59.1 9.6
ResNet50-IDE MSRCP [25] 38.1 56.8 63.7 75.0 13.3
ResNet50-IDE LIME [7] 29.6 45.6 52.8 58.8 8.1

Our framework 42.1 57.3 63.7 69.8 12.9

Low-light Duke

ResNet50-IDE - 32.2 46.3 51.5 57.9 11.1
ResNet50-IDE MSRCP 31.8 48.4 54.7 59.8 11.4
ResNet50-IDE LIME 34.0 49.7 56.1 61.9 12.9

Our framework 38.8 53.1 58.6 63.0 14.5

MSMT17

ResNet50-IDE - 57.3 72.7 78.6 84.3 29.7
ResNet50-IDE MSRCP 57.5 73.0 78.6 83.6 29.3
ResNet50-IDE LIME 55.9 71.6 77.5 82.4 28.1

Our framework 59.1 74.0 79.2 83.8 28.6

Table 5: Performance of the joint framework in combination with the state-of-the-art method.

Dataset Model Rank-1 Rank-5 Rank-10 Rank-20 mAP

Low-light Market
PCB 48.7 63.5 68.8 74.0 16.8

Our framework + PCB 52.6 68.5 73.7 78.9 18.8

Low-light Duke
PCB 48.6 60.9 65.9 70.5 21.1

Our framework + PCB 49.5 62.1 66.6 70.9 22.1

CNN features, including activation maps and feature vectors
used for inference.

Using ResNet50-IDE [37] as the baseline model, the re-id
performance of low-light and normal-light person datasets are
shown in Table 1 and Table 2. We can see that rank-1 accuracy
and mAP decrease by 48.5% and 53.3% on the Market dataset,
and 41.4% and 42.9% on the Duke dataset, respectively. We
then test the state-of-the-art PCB [28] method and the re-id
performance still drops by a large margin.

Next, we analyze the features extracted under different
lighting conditions by visualizing activation maps and feature
vectors. Specifically, we visualize the activation maps before
the last pooling layer of our baseline model. We found that
under normal lighting conditions, the attention is mostly
concentrated on the person area, as shown in Figure 7(a),
while under low-light conditions, the attention maps become
scattered and focus on those bright areas, as shown in Figure
7(b).

For feature embedding, we select 1,000 samples of Market-
1501 dataset and extract 2048-dim feature vectors from them
using the baseline model. To visualize the distribution of
these feature vectors, we use the t-SNE method to reduce
the dimension from 2048-dim to 2-dim, and the final result is
shown in Figure 8. In normal-light situations, feature vectors
belonging to the same identity tend to group closely, and
those with different identities are separated. However, in low-
light situations, the distribution of feature vectors becomes
significantly scattered, which leads to overlapping decision

regions, causing a negative impact on the performance of
re-id task.

Evaluation of bottom-up attention. Bottom-up at-
tention is proposed for suppressing the over-enhancement
as described in Section 3.2. For those extremely dark ar-
eas, directly performing illumination decomposition (also
referred to as enhancement in this paper) results in severe
color distortion and noises magnification, as illustrated in
Figure 10(b). Directly using such enhanced results inevitably
lead to poor re-id performance. Table 3 shows the perfor-
mance reduction on MSMT17 and 3DPeS dataset caused by
over-enhancement.

After introducing our proposed bottom-up attention mod-
ule, the illustration of enhanced images is shown in Figure
10(c). The distortion has been effectively eliminated shown in
Figure 9, and the original properties of the dark region is well
preserved. As can be seen in Table 3, using our bottom-up
attention module can further improve the re-id performance.

Performance of the joint framework. To evaluate our
joint framework for learning illumination-invariant feature,
we have selected two recent image enhancement methods:
LIME [7] and MSRCP [25], as competitors. We use these
two methods to preprocess the person images and then feed
them into ResNet50-IDE. This operation is performed on
both training and testing stages.

Table 4 shows that our framework outperforms other light
enhancement + re-id schemes and achieves consistently supe-
rior performances on all datasets. Specifically, the increment
of rank-1 accuracy can reach +8.1%, +6.6% and +1.8% on
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Figure 9: Illustration for effectiveness of our enhance
module. Top: original images, bottom: enhanced im-
ages.

low-light Market, low-light Duke and MSMT17 datasets, re-
spectively. The increment of mAP reached +3.4% on low-light
Duke dataset.

Further evaluation. In the previous experiments, we
have verified that the current state-of-the-art re-id methods
can not avoid the large performance degradation caused by
weak illumination. This is because these methods focus on
solving the high-level semantic feature mismatch problem,
such as pose changes and occlusion, without considering illu-
mination changes. On the contrary, our framework is specif-
ically designed to learn the illumination-invariant feature,
which is able to benefit other state-of-the-art methods. To
verify the idea, we add our proposed model with PCB [28]. As
shown in Table 5, the framework brings further performance
improvement to the PCB model, as expected. For low-light
Market dataset, rank-1 accuracy and mAP are increased by
+3.9% and +2.0%, respectively. For low-light Duke dataset,
rank-1 accuracy and mAP are increased by +0.9% and +1.0%.
As a result, the proposed framework is effective to tackle the
problems of weak illumination and light changes and can be
combined with existing state-of-the-art methods to further
improve performance.

(a) Original images

(b) Enhanced images

(c) Enhanced images with Bottom-Up Attention

Figure 10: Illustration for effectiveness of our
bottom-up attention module.

5 CONCLUSION

Low-light or mixed lighting conditions are common in real-
world surveillance scenarios, while most existing re-id meth-
ods lack robustness to illumination changes. In this work, we
first prove that weak illumination conditions have a negative
impact on the person re-id task. Inspired by the Retinex
theory, we then perform illumination decomposition on in-
put person images to obtain reflectance maps as enhanced
results. A bottom-up attention module is further introduced
to suppress over-enhancement. To connect both low-level
and high-level vision tasks, we propose a unified framework
to learn the illumination invariant feature for person re-id.
Extended experiments demonstrate the superiority of our
framework by comparing to other light enhancement + re-id
schemes. We also show that our framework can be directly
combined with existing re-id methods and improves their
robustness to weak illuminated images.
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