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Clearing the Skies: A Deep Network Architecture
for Single-Image Rain Removal

Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, and John Paisley

Abstract— We introduce a deep network architecture called
DerainNet for removing rain streaks from an image. Based on
the deep convolutional neural network (CNN), we directly learn
the mapping relationship between rainy and clean image detail
layers from data. Because we do not possess the ground truth
corresponding to real-world rainy images, we synthesize images
with rain for training. In contrast to other common strategies
that increase depth or breadth of the network, we use image
processing domain knowledge to modify the objective function
and improve deraining with a modestly sized CNN. Specifically,
we train our DerainNet on the detail (high-pass) layer rather
than in the image domain. Though DerainNet is trained on
synthetic data, we find that the learned network translates very
effectively to real-world images for testing. Moreover, we augment
the CNN framework with image enhancement to improve the
visual results. Compared with the state-of-the-art single image
de-raining methods, our method has improved rain removal and
much faster computation time after network training.

Index Terms— Rain removal, deep learning, convolutional
neural networks, image enhancement.

I. INTRODUCTION

THE effects of rain can degrade the visual quality of
images and severely affect the performance of outdoor

vision systems. Under rainy conditions, rain streaks create not
only a blurring effect in images, but also haziness due to light
scattering. Effective methods for removing rain streaks are
required for a wide range of practical applications, such as
image enhancement and object tracking. We present the first
deep convolutional neural network (CNN) tailored to this task
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Fig. 1. An example real-world rainy image and our de-rained result.
(a) Input rainy image. (b) Our result.

and show how the CNN framework can obtain state-of-the-
art results. Figure 1 shows an example of a real-world testing
image degraded by rain and our de-rained result.

In the last few decades, many methods have been proposed
for removing the effects of rain on image quality. These meth-
ods can be categorized into two groups: video-based methods
and single-image based methods. We briefly review these
approaches to rain removal, then discuss the contributions of
our proposed DerainNet.

A. Related Work: Video v.s. Single-Image
Based Rain Removal

Due to the redundant temporal information that exists in
video, rain streaks can be more easily identified and removed
in this domain [1]–[4]. For example, Garg and Nayar [1]
first propose a rain streak detection algorithm based on a
correlation model. After detecting the location of rain streaks,
the method uses the average pixel value taken from the neigh-
boring frames to remove streaks. Barnum et al. [2] analyze the
properties of rain and establish a model of visual effect of rain
in frequency space. In [3], the histogram of streak orientation
is used to detect rain and a Gaussian mixture model is used
to extract the rain layer. In [4], based on the minimization of
registration error between frames, phase congruency is used
to detect and remove the rain streaks. Many of these methods
work well, but are significantly aided by the temporal content
of video. In this paper we instead focus on removing rain from
a single image.

Compared with video-based methods, removing rain from
individual images is much more challenging since much
less information is available for detecting and removing rain
streaks. Single-image based methods have been proposed
to deal with this challenging problem, but success is less
noticeable than in video-based algorithms, and there is still
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much room for improvement. To give three examples, in [5]
rain streak detection and removal is achieved using kernel
regression and a non-local mean filtering. In [6], a related
work based on deep learning was introduced to remove static
raindrops and dirt spots from pictures taken through windows.
This method uses a different physical model from the one
in this paper. As our later comparisons show, this physical
model limits its ability to transfer to rain streak removal.
In [7], a generalized low-rank model in which rain streaks are
assumed to be low rank is proposed. Both single-image and
video rain removal can be achieved by characterizing spatio-
temporally correlations of rain streaks.

Recently, several methods based on dictionary learning have
been proposed [8]–[12]. In [9], the input rainy image is
first decomposed into its base layer and detail layer. Rain
streaks and object details are isolated in the detail layer while
the structure remains in the base layer. Then sparse coding
dictionary learning is used to detect and remove rain streaks
from the detail layer. The output is obtained by combining the
de-rained detail layer and base layer. A similar decomposition
strategy is also adopted in method [12]. In this method, both
rain streaks removal and non-rain component restoration is
achieved by using a hybrid feature set. In [10], a self-
learning based image decomposition method is introduced to
automatically distinguish rain streaks from the detail layer.
Luo et al. [11] use discriminative sparse coding to recover
a clean image from a rainy image. A drawback of meth-
ods [9], [10] is that they tend to generate over-smoothed results
when dealing with images containing complex structures that
are similar to rain streaks, as shown in Figure 9(c), while
method [11] usually leaves rain streaks in the de-rained result,
as shown in Figure 9(d). Moreover, all four dictionary learning
based frameworks [9]–[12] require significant computation
time. More recently, patch-based priors for both the clean and
rain layers have been explored to remove rain streaks [13].
In this method, the multiple orientations and scales of rain
streaks are addressed by pre-trained Gaussian mixture models.

B. Contributions of our DerainNet Approach

As mentioned, compared to video-based methods, remov-
ing rain from a single image is significantly more diffi-
cult. This is because most existing methods [9]–[11], [13]
only separate rain streaks from object details by using low
level features, for example by learning a dictionary for
object representation. When an object’s structure and ori-
entation are similar with that of rain streaks, these meth-
ods have difficulty simultaneously removing rain streaks
and preserving structural information. Humans on the other
hand can easily distinguish rain streaks within a single
image using high-level features such as context information.
We are therefore motivated to design a rain detection and
removal algorithm based on the deep convolutional neural
network (CNN) [14], [15]. CNN’s have achieved success on
several low level vision tasks, such as image denoising [16],
super-resolution [17], [18], image deconvolution [19], image
inpainting [20] and image filtering [21]. We show that the
CNN can also provide excellent performance for single-image
rain removal.

In this paper, we propose “DerainNet” for removing rain
from single-images, which we base on the deep CNN. To our
knowledge, this is the first approach based on deep learning
to directly address this problem. Our main contributions are
threefold:

1) DerainNet learns the nonlinear mapping function
between clean and rainy detail (i.e., high resolution)
layers directly and automatically from data. Both
rain removal and image enhancement are performed
to improve the visual effect. We show significant
improvement over three recent state-of-the-art methods.
Additionally, our method has significantly faster testing
speed than the competitive approaches, making it more
suitable for real-time applications.

2) Instead of using common strategies such as increasing
neurons or stacking hidden layers to effectively and
efficiently approximate the desired mapping function,
we use image processing domain knowledge to modify
the objective function and improve the de-rain quality.
We show how better results can be obtained without
introducing more complex network architecture or more
computing resources.

3) Because we lack access to the ground truth for real-
world rainy images, we synthesize a dataset of rainy
images using real-world clean images, which we can
take as the ground truth. We show that, though we train
on synthesized rainy images, the resulting network is
very effective when testing on real-world rainy images.
In this way, the model can be learned with easy access
to an unlimited amount of training data.

II. DERAINNET: DEEP LEARNING FOR RAIN REMOVAL

We illustrate the proposed DerainNet framework in Figure 2.
As discussed in more detail below, we decompose each image
into a low-frequency base layer and a high-frequency detail
layer. The detail layer is the input to the CNN for rain removal.
To further improve visual quality, we introduce an image
enhancement step to sharpen the results of both layers since
the effects of heavy rain naturally leads to a hazy effect.

A. Training on High-Pass Detail Layers

We denote the input rainy image and corresponding clean
image as I and J respectively. Initially, a goal may be to train
a network architecture hP(·) that minimizes

L = 1

N

N∑

n=1

‖ fW(In) − Jn‖2
F , (1)

where W are the network parameters and F is the Frobenius
norm and n indexes the image. However, we found that the
result obtained by directly training in the image domain is
not satisfactory. In Figure 3(a), we show an example of a
synthetic rainy image. Note that this image is used in the
training process. In Figure 3(b) we see that even when this
image is used as a training sample, the de-rained image still
exhibits clear rain streaks when zoomed in.

Figure 3(b) implies that the desired mapping function was
not well learned when training on the image domain, i.e., the
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Fig. 2. The proposed DerainNet framework for single-image rain removal. The intensities of the detail layer images have been amplified for better visualization.

Fig. 3. CNN learning options: (b) directly on image domain with depth = 3 (equivalent to retraining [6] on new data), (c) directly on image domain with
depth = 10, and (d) on high-frequency detail layer with depth = 3. The first row shows the full image and the second row a zoomed-in region. (a) Rainy
image. (b) Image domain, depth = 3. (c) Image domain, depth = 10. (d) Detail layer domain, depth = 3.

model under-fit the data. It is natural to ask whether it is
necessary to train a more complex model to further improve
the capacity of the network. As is well-known, there are two
ways to improve a network’s capacity in the deep learning
domain. One way is to increase the depth of network [22]
by stacking more hidden layers. Usually, more hidden layers
can help to obtain high-level features. However, the de-rain
problem is a low-level image task and the deeper structure
is not necessarily better for this image processing problems.
Furthermore, training a feed-forward network with more layers
suffers from gradient vanishing unless other training strate-
gies or more complex network structures are introduced.
As shown in Figure 3(c), when we add network depth to
improve the modeling ability, the result actually becomes
worse. The other approach is to increase the breadth of
network [23] by using more neurons in each hidden layer.
However, to avoid over-fitting, this strategy requires more
training data and computation time that may be intolerable
under normal computing condition.

To address these issues for the de-raining problem,
we instead use a priori image processing knowledge to modify
the objective function rather than increase the complexity of
the problem. Conventional end-to-end procedures directly uses
image patches to train the model by finding a mapping function
f that transforms the input to output [6], [17]. Motivated by
Figure 3, rather than directly train on the image, we first
decompose the image into the sum of a “base” layer and a
“detail” layer by using a low-pass filter,

J = Jbase + Jdetail. (2)

Using on image processing techniques, we found that after
applying an appropriate low-pass filters such as [24], [25],
and [26], low-pass versions of both the rainy image Ibase
and the clean image Jbase are smooth and are approximately
equal, as shown in Figure 4. In other words, both the rain
streaks and the object’s details remain in the high-pass detail
layer and Ibase ≈ Jbase. This implies that the base layer
portion can be removed from the training process, significantly
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Fig. 4. Example base and detail layers of two synthesized images. We use the guided filtering [24] as the low-pass filter to generate the results.
(a) Clean images J. (b) Rainy images I. (c) Jbase. (d) Ibase. (e) |Jbase − Ibase|.

Fig. 5. Sparsity of detail layer. The detail layers are obtained by Jdetail = J − Jbase and Idetail = I − Ibase. (a) Clean image J. (b) Rainy image I. (c) Jdetail.
(d) Idetail. (e) Histogram of (a). (f) Histogram of (b). (g) Histogram of (c). (h) Histogram of (d).

simplifying the mapping needed to be learned by the CNN.
Thus, we rewrite the objective function in (1) as

L = 1

N

N∑

n=1

∥∥ fW(In
detail) − Jn

detail

∥∥2
F . (3)

This directly lead us to train the CNN network on the detail
layer instead of the image domain. Moreover, training on the
detail layer has several advantages. First, after subtracting the
base layer, the detail layer is sparser than the image since
most regions in the detail layer are close to zero. As shown
in Figure 5, the detail layer has many more pixels that are
close to zero than the image itself. Taking advantage of the
sparsity of the detail layer is a widely used technique in
existing de-raining methods [9]–[11]. In the context of a neural
network, training a CNN on the detail layer also follows the
procedure of mapping an input patch to an output patch, but
since the mapping range has been significantly decreased,
the regression problem is significantly easier to handle for
a deep learning model. Thus, training on the detail layer
instead of the image domain can improve learning the network
weights and thus the de-raining result without a large increase
in training data or computational resources.

A second advantage of training on sparse data is that
it can improve the convergence of the CNN. As we show
in our experiments (Figure 17), training on the detail layer
converges much faster than training on the image domain.
A third advantage is that decomposing an image into base and
detail layers is widely used by the wider image enhancement
community [27], [28]. These enhancement procedures are
tailored to this decomposition and can be easily embedded
into our architecture to further improve image quality, which
we describe in Section II-D.

We therefore first decompose the image into a base layer
by using a low-pass filter and a detail layer; the detail layer
is equal to the difference between the image and the base
layer. We use the guided filtering method of [24] as the low-
pass filter because it is simple and fast to implement. In this
paper, the guidance image is the input image itself. However,
the choice of low-pass filter is not limited to guided filtering;
other filtering approaches were also effective in our exper-
iments, such as bilateral filtering [25] and rolling guidance
filtering [26]. Results with these filters were nearly identical,
so we choose [24] for its low computational complexity.

After this decomposition we train the CNN on the
detail layer image instead of raw image itself according
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Fig. 6. Visualization of intermediate results. The first row shows our de-raining result and the trained weights W1 (512 kernels of size 16 × 16 × 3) and
W3 (3 kernels of size 8 × 8 × 512, one for each color channel). For W3 we visualize these three kernels as RGB images across the 512 dimensions. Since
the 512 kernels W2 are 1 × 1 × 512, we do not show them. The second row shows the corresponding hidden layer activations. (e) and (h) show the detail
layer input and output of the network. In (f) we show four of the 512 convolutional output of (e) in the first layer. These appear to be producing different
“views” of the rain. In (g) we show four of the 512 layers that are combined to produced the three layer RGB output in (f). The intensities of the images in
the second row have been amplified for better visualization.

Fig. 7. An example of synthesized rainy images. The top left is the clean image and the remaining are various images synthesized.

to Eq. (3). This step represents the CNN portion of Figure 2.
In Figure 3(d) we show an example of the de-rained image
using this training approach. In terms of rain streak removal,
the result is clearly better than the same CNN structure trained
on the image domain shown in Figure 3(b). This conclusion
is further supported by our experiments below.

B. Our Convolutional Neural Network

We build our network structure same to [6]. Our network
structure can be expressed as three operations:

f l(Idetail) = σ(Wl ∗ f l−1(Idetail) + bl), l = 1, 2 (4)

fW(Idetail) = Wl ∗ f l−1(Idetail) + bl , l = 3, (5)

where l indexes layer number, ∗ indicates the convolution
operation and bl is the bias. We define σ(·) to be the nonlinear
hyperbolic tangent function and f 0(Idetail) = Idetail. We use
two hidden layers in our DerainNet architecture and Eq. (5)
is the output of the cleaned detail layer.

To better understand the effects of the network fW, we show
the learned weights and intermediate results from the hidden
layers in Figure 6. The first hidden layer performs feature
extraction on the input detail layer, which is similar to the
common strategy used for image restoration of extracting

and representing image patches by a set of dictionary ele-
ments. Thus, W1 contains some filters that look like edge
detectors that align with the direction of rain streaks and
object edges. The second hidden layer performs the rain
streaks removal and f 2(Idetail) looks smoother than f 1(Idetail).
The third layer performs reconstruction and enhances the
smoothed details with respect to image content. As can be seen
in Figure 6(h), fW(Idetail) contains clear details with most of
the rain removed. The intermediate results show that the CNN
is effective at feature extraction and helps to recognize and
remove rain streaks.

C. Training

We use stochastic gradient descent (SGD) to minimize the
objective function in Eq. (3). Since it is extremely difficult to
obtain numerous clean/rainy image pairs from real-world data,
we synthesize rain using Photoshop1 to create our training
dataset. We randomly collected a total of 350 clean outdoor
images from the UCID dataset [29], the BSD dataset [30]
and Google image search which we used to synthesize rainy
images. Each clean image was used to generate 14 rainy
images of different streak orientations and intensity. An exam-
ple is shown in Figure 7. Thus, we create a dataset containing

1http://www.photoshopessentials.com/photo-effects/rain/
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350 × 14 = 4900 rainy images, each having a corresponding
ground truth clean image. We randomly selected one million
64 × 64 clean/rainy patch pairs from this synthesized data as
training samples. A 56×56 output is generated to avoid border
effects caused by convolution. In each iteration, t , the CNN
weight and bias are updated using back-propagation,

Wt+1 = Wt − α( fW(Idetail_i) − Jdetail_i)
T ∂ fW(Idetail_i)

∂W
,

bt+1 = bt − α( fW(Idetail_i) − Jdetail_i)
T , (6)

where α is the learning rate and (Idetail_i, Jdetail_i) is the
i th patch pair.

D. Combining CNN With Image Enhancement

After training the network, the de-rained image can be
obtained by directly adding the output detail layer to the base
layer,

O = Ibase + fw(Idetail), (7)

where O is the de-rained output. However, when dealing with
heavy rain the result unsurprisingly looks hazy, as shown
in Figure 8(b). Fortunately, we can easily embed image
enhancement technology into our framework to create a better
visual result. Different mature and advanced image enhance-
ment algorithms can be directly adopted in this framework
as post-processing. In this paper, we use the non-linear func-
tion [31] to enhance the base layer, and boost the detail layer
by simply multiplying the output of the CNN by two to
magnify the details,

Oenhanced = (Ibase)enhanced + 2 fw(Idetail), (8)

where Oenhanced is the de-rained output with enhancement and
(Ibase)enhanced is the enhanced base layer. Figure 8(c) shows
the de-rained result with image enhancement. As shown in the
intermediate results in Figures 8(d)-(g), virtually all of rain
removal is being performed on the detail layer by the CNN,
while the image enhancement on the base layer improves the
global contrast and leads to a better visual result than shown
in Figure 8(b) without using enhancement.

III. EXPERIMENTS

To evaluate our DerainNet framework, we test on both
synthetic and real-world rainy images. As mentioned previ-
ously, both testing frameworks are performed using the net-
work trained on synthesized rainy images. We compare with
three recent high quality de-raining methods [10], [11], [13].
Software implementations of these methods were provided in
Matlab by the authors. We use the default parameters reported
in these three papers. All experiments are performed on a
PC with Intel Core i5 CPU 4460, 8GB RAM and NVIDIA
Geforce GTX 750. Our network contains two hidden layers
and one output layer as described in Section II-B. We set
kernel sizes s1 = 16, s2 = 1 and s3 = 8, respectively.
The number of feature maps for each hidden layer are
n1 = n2 = 512. We set the learning rate to α = 0.01. Our
rainy image dataset and Matlab implementation can be found
at http://smartdsp.xmu.edu.cn/derainNet.html.

Fig. 8. Visualization of intermediate results with enhancement. Intensities
of detail layers have been amplified for better visualization. (a) Rainy image.
(b) Result by Eq. (7). (c) Result by Eq. (8). (d) Detail layer. (e) De-rained (d).
(f) Base layer. (g) Enhanced (f).

Fig. 9. Results on synthesized rainy image “dock”. Row 2 shows corre-
sponding enlarged parts of red boxes in Row 1. (a) Ground truth. (b) Rainy
image. (c) Method [10]. (d) Method [11]. (e) Method [13]. (f) Our result.

A. Synthesized Data

We first evaluate the results of testing on newly synthesized
rainy images. In our first results, we synthesize new rainy
images by selecting from the set of 350 clean images from
our database. Figure 9 shows visual comparisons for one such
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Fig. 10. Example results on synthesized rainy images “umbrella”, “rabbit”, “girl” and “bird.” These rainy images were for testing and not used for training.
(a) Ground truth. (b) Synthesized image. (c) Method [10]. (d) Method [11]. (e) Method [13]. (f) DerainNet.

TABLE I

QUANTITATIVE MEASUREMENT RESULTS USING SSIM ON SYNTHESIZED TEST IMAGES

synthesized test image. As can be seen, method [10]
exhibits over-smoothing of the rope and method [11], [13]
leaves significant rain streaks in the result. This is
because [10], [11], [13] are algorithms based on low-level
image features. When the rope’s orientation and magnitude
is similar with that of rain, methods [10], [11], [13] cannot
efficiently distinguish the rope from rain streaks. However,
as shown in the last result, the multiple convolutional layers
of DerainNet can identify and remove rain while preserving
the rope.

Figure 10 shows visual comparisons for four more syn-
thesized rainy images using different rain streak orientations
and magnitudes. Since the ground truth is known, we use
the structure similarity index (SSIM) [32] for quantitative
evaluation. A higher SSIM value indicates a de-rained image
that is closer to the ground truth in terms of image structural
properties. (For the ground truth, the SSIM equals 1.) For
a fair comparison, the image enhancement operation is not
implemented by our algorithm for these synthetic experiments.

As is again evident in these results, method [10] over-
smooths the results and methods [11], [13] leave rain streaks,

TABLE II

# TIMES (ROW) BEAT (COL)

both of which are addressed by our algorithm. Moreover,
we see in Table I that our method has the highest SSIM values,
in agreement with the visual effect. Also shown in Table I
is the performance of the three methods on 100 newly-
synthesized testing images using our synthesizing strategy.

In Table I we also show results applying the same trained
algorithms for each method on 12 newly synthesized rainy
images (called Rain12) [13] that are generated using pho-
torealistic rendering techniques [33]. This clearly highlights
the generalizability of DerainNet to new scenes; whereas the
other algorithms either decrease the performance or leave it
unchanged, DerainNet still shows improvement. In Table II
we show the number of images for which the algorithm
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TABLE III

QUANTITATIVE MEASUREMENT RESULTS OF BIQI ON REAL-WORLD TEST IMAGES

Fig. 11. Comparison of algorithms on a real-world “soccer” image with and without enhancement. (a) Rainy image. (b) Method [10]. (c) Method [11].
(d) Method [13]. (e) Our result. (f) Rainy enhanced. (g) Method [10] enhanced. (h) Method [11] enhanced. (i) Method [13] enhanced. (i) Our result enhanced.

Fig. 12. Three more results on real-world rainy images: (top-to-bottom) “Buddha,” “street,” “cars.” All algorithms use image enhancement. (a) Rainy images.
(b) Method [10]. (c) Method [11]. (d) Method [13]. (e) Our results.

on the row outperformed the algorithm on the column for
these 112 images.

B. Real-World Data

Since we do not possess the ground truth corresponding to
real-world rainy images, we test DerainNet on real-world data
using the network trained on the 4900 synthesized images from
the previous section. In Figure 11 we show the results of all
algorithms with and without enhancement, where enhancement
of [10], [11] and [13] are performed as post-processing, and

for DerainNet is performed as shown in Figure 2. In our quan-
titative comparison below, we use enhancement for all results,
but note that the relative performance between algorithms was
similar without using enhancement. We show results on three
more real-world rainy images in Figure 12. Although we use
synthetic data to train our DerainNet, we see that this is
sufficient for learning a network that is effective when applied
to real-world images.

In Figure 12, the proposed method arguably shows the
best visual performance on simultaneously removing rain and
preserving details. Since the ground truth is unavailable in
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TABLE IV

AVERAGE SCORES OF USER STUDY

these examples, we cannot definitively say which algorithm
performs quantitatively the best. Instead, we use a reference-
free measure called the Blind Image Quality Index (BIQI) [34]
for quantitative evaluation. This index is designed to provide
a score of the quality of an image without reference to
ground truth. A lower value of BIQI indicates a higher quality
image. However, as with all reference-free image quality
metrics, BIQI is arguably not always subjectively correct.
Still, as Table III indicates, our method has the lowest BIQI
on 100 newly obtained real-world testing images. This gives
additional evidence that our method outputs an image with
greater improvement.

To provide realistic feedback and quantify the subjective
evaluation of DerainNet, we also constructed an independent
user study. In this experiment, we use the de-rained results
(with enhancement) of the same 100 real-world images scored
with BIQI. For each image, we randomly order the outputs
of the four algorithms, as well as the original rainy image,
and display them on a screen. We then separately asked
20 participants to rank each image from 1 to 5 subjec-
tively according to quality, with the instructions being that
visible rain should decrease the quality and clarity should
increase quality (1 represents the worst quality image and
5 represents the best quality image). We show the average
scores in Table IV from these 2000 trials. As is evident,
methods [10] and [11] do not make a clear improvement
over the original image. Method [7] does clearly improve the
rainy image, but the proposed method is subjectively superior
to all images. This small-scale experiment gives additional
support along with BIQI and our own subjective assess-
ment that DerainNet improves the de-raining on real-world
images.

C. Parameter Settings

In this section, we test different parameters setting to study
their impact on performance. We use the same training data
as previously. The testing data includes the same 100 newly-
synthesized images as well as the new Rain12 images [13].

1) Kernel Size: First, we test the impact of different kernel
sizes. The default kernel sizes for the three levels are 16,
1 and 8; we denote this network as 16-1-8. We fix the kernel
size of the second layer and reduce the kernel sizes of first
and third layers to 4-1-2 and 8-1-4. We then performed exper-
iments by instead increasing the kernel size of second layer
to 16-3-8 and 16-5-8. Table V shows the average SSIM values
for these different kernel sizes. As can be seen, larger kernel
sizes can generate better results. This is because more structure
and texture can be modeled using a large kernel. On the con-
trary, from our experiments we find that increasing the kernel
size of the second layer brings only limited improvement. This
is because the second layer performs a non-linear operation
for rain removal and the 1 × 1 kernel can achieve promising

TABLE V

AVERAGE SSIM OF DIFFERENT KERNEL SIZES

TABLE VI

AVERAGE SSIM OF DIFFERENT NETWORK WIDTH

TABLE VII

AVERAGE SSIM OF DIFFERENT NETWORK DEPTH

results. Thus, we choose 16-1-8 as the default setting of kernel
size.

2) Network Width: Intuitively, if we increase the network
width by increasing the number of kernels, n1 and n2, the per-
formance should improve. We train three models by using
the values: n1, n2 ∈ {64, 128, 256} and compare them to
our default setting of n1 = n2 = 512. Table VI shows the
average SSIM values for these four models. As can be seen,
better performance can be achieved by increasing the width
of the network. However, increasing the number of kernels
improves the performance at the cost of running time since
more convolutional operations are required. Thus, we choose
n1 = n2 = 512 as the default setting of network width.

3) Network Depth: We also test the performance of using
deeper structures by adding more non-linear layers. We train
and test on 3 networks with depths 3, 5 and 10. As shown
in Table VII, for the de-raining problem, increasing the net-
work depth does not bring better results using a feed-forward
network structure. This is a result of gradient vanishing, which
may be addressed by designing a more complex network
structure (with increased computation time). However, our
DerainNet generates high quality results with only 3 layers
as a result of our proposed detail training strategy, and so
the complexity and computation time of the model can be
significantly reduced. Therefore, we adopt three layers as the
default setting.

D. Comparison With Another Potential
Deep Learning Method

The proposed DerainNet combines image domain knowl-
edge as pre-processing before the CNN step. As mentioned [6]
proposed directly using a CNN to removing dirt and drops
from a window [6]. (This is the only other related deep learn-
ing approach we are aware of.) As motivated in Section II-A
and Figure 3, directly training on the image domain has draw-
backs. We show a few other examples on real and synthesized
data in Figure 13. As is evident from these examples as well,
directly training on the image domain has drawbacks that
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Fig. 13. Top: Two zoomed-in regions of images synthesized with rain.
Bottom: Real world rainy image (no enhancement). (a) Truth. (b) Rain.
(c) Plain CNN [6]. (d) Ours. (e) Rainy image. (f) Plain CNN [6]. (g) Ours.

Fig. 14. Impact of image enhancement of different processing strategies.
(a) Rainy image. (b) De-rain result. (c) Post-processed (b). (d) Simultaneous
processing.

are effectively addressed by our approach. We note that both
approaches have virtually identical computational complexity.

E. Impact of Image Enhancement Step

In this section we assess the impact of image enhancement
on our algorithm. We adopt three processing strategies for
real-world data. Specifically, we conduct de-raining without
any enhancement, de-raining with the enhancement as a
post-processing step after reconstruction, and simultaneous
de-raining and enhancement as proposed in Figure 2. Figure 14
shows one example of these different processing strategies.

As can be seen, rain streaks are removed by the CNN alone,
while the enhancement step further improves the visual quality.

TABLE VIII

BIQI RESULTS FOR THREE ENHANCEMENT STRATEGIES

Fig. 15. Impact of three low-pass filters [24]–[26]. SSIM values of (l), (m)
and (n) are 0.9181, 0.9160 and 0.9158, respectively. Intensities of detail layer
images have been amplified for better visualization. (a) Clean image. (b) Rainy
image. (c) Base layer [24]. (d) Base layer [25]. (e) Base layer [26]. (f) Detail
layer [24]. (g) Detail layer [25]. (h) Detail layer [26]. (i) De-rained (f).
(j) De-rained (g). (k) De-rained (h). (l) Result of (c)+(i). (m) Result of (d)+(j).
(n) Result of (e)+(k).

We also use the BIQI metric to evaluate the three strategies by
testing on collected real-world images, as shown in Table VIII.
Although the visual quality is similar with post-processing,
the overall BIQI shows the best quantitative performance of
our “mid-processing” approach.
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Fig. 16. Comparison with method [10] by using the bilateral filtering approach as pre-processing for the respective models. SSIM values of (e) and (j) are
0.77 and 0.87, respectively. Intensities of detail layer images have been amplified for better visualization. (a) Rainy image. (b) Base layer (Y channel).
(c) Detail layer (Y channel). (d) De-rained (c) [10]. (e) De-rained result [10]. (f) Clean image. (g) Base layer (RGB). (h) Detail layer (RGB).
(i) Our de-rained (h). (j) Our de-rained result.

F. Impact of the Selected Low-Pass Filter

Though we choose the guided filter [24] to separate the
base and detail layers for training the CNN, we found that the
framework of Figure 2 is effective using other low-pass filters
as well. Figure 15 shows one example of a de-raining result
using different low-pass filters: guided filtering [24], bilateral
filtering [25] and rolling guidance filtering [26]. As can be
seen, though the low and high frequency decomposition look
significantly different, the de-raining result is qualitatively
similar and the three SSIM values of the de-rained results are
almost the same. DerainNet is able to recognize and remove
rain as long as it is isolated to the detail layer.

The method proposed in [10] also applies this decom-
position strategy using the bilateral filtering, but used in a
different model. We make a comparison with method [10]
using bilateral filtering for our CNN as well. To ensure the
low-pass filter removes all the rain streaks, we change the
default parameters of the bilateral filtering in [10]. Specifically,
we change the window size from 5 to 15 and intensity-
domain standard deviations from 0.1 to 1. The difference
in filtering operations between our method and [10] is that
method [10] implements the pre-processing in the Y channel
of YUV color space, while our method implements it in the
RGB color space. Figure 16 shows the both intermediate and
final de-rained results. As can be seen, both methods isolate
the rain to the high-pass portion for de-raining, but [10] fails
to completely remove rain streaks in Figure 16(c), while our
result in Figure 16(i) has considerably better success. The final
results are shown in Figures 16(e) and (j).

G. Training Convergence and Testing Runtime

Training required approximately two days to run.
In Figure 17 we show the training convergence as a func-
tion of the number of backpropagations. While training
requires a nontrivial amount of computation time, DerainNet
is able to process new images very efficiently compared with
current state-of-the-art de-raining methods. Table IX shows
the average running time for three different image sizes, each

Fig. 17. The training convergence curve of DerainNet.

TABLE IX

COMPARISON OF RUNNING TIME (SECONDS)

averaged over 10 testing images. (Note that these results do
not factor in training time, but are for applying these methods
to new data.) Since methods [10], [11] are based on dictionary
learning and method [13] is based on Gaussian mixture model
learning, complex optimizations are still required to de-rain
new images, leading to a slower computation time. Our
method has significantly faster running time since the testing
procedure is completely feed-forward after network training.
For even larger images, such as those taken by a typical
camera, [10], [11], [13] take from several minutes to
over an hour to process a new image, while our method
requires roughly half a minute based on a parallel
GPU implementation.

IV. CONCLUSION

We have presented a deep learning architecture called
DerainNet for removing rain from individual images. Using
a convolutional neural network on the high frequency detail
content, our approach learns the mapping function between
clean and rainy image detail layers. Since we do not possess
the ground truth clean images corresponding to real-world
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rainy images, we synthesize clean/rainy image pairs for net-
work learning, and showed how this network still transfers well
to real-world images. We showed that deep learning with con-
volutional neural networks, a technology widely used for high-
level vision task, can also be exploited to successfully deal
with natural images under bad weather conditions. We also
showed that DerainNet noticeably outperforms other state-
of-the-art methods with respect to image quality and com-
putational efficiency. In addition, by using image processing
domain knowledge, we were able to show that we do not need
a very deep (or wide) network to perform this task.
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