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Abstract

We propose a deep network architecture for the pan-

sharpening problem called PanNet. We incorporate

domain-specific knowledge to design our PanNet architec-

ture by focusing on the two aims of the pan-sharpening

problem: spectral and spatial preservation. For spectral

preservation, we add up-sampled multispectral images to

the network output, which directly propagates the spectral

information to the reconstructed image. To preserve spatial

structure, we train our network parameters in the high-pass

filtering domain rather than the image domain. We show

that the trained network generalizes well to images from

different satellites without needing retraining. Experiments

show significant improvement over state-of-the-art methods

visually and in terms of standard quality metrics.

1. Introduction

Multispectral images are widely used, for example in

agriculture, mining and environmental monitoring applica-

tions. Due to physical constraints, satellites will often only

measure a high resolution panchromatic (PAN) image (i.e.,

grayscale) and several low resolution multispectral (LRMS)

images. The goal of pan-sharpening is to fuse this spectral

and spatial information to produce a high resolution multi-

spectral (HRMS) image of the same size as PAN.

With recent advances made by deep neural networks for

image processing applications, researchers have begun ex-

ploring this avenue for pan-sharpening. For example, one

deep pan-sharpening model assumes that the relationship

between HR/LR multispectral image patches is the same
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Figure 1. Examples from 425 satellite images used in experiments.

as that between the corresponding HR/LR panochromatic

image patches, and uses this assumption to learn a map-

ping through a neural network [16]. The state-of-the-art

pan-sharpening model, based on the convolutional neural

network and called PNN [21], adopts an architecture previ-

ously proposed for image super-resolution [11].

These two methods regard the pan-sharpening problem

as a simple image regression problem. That is, though

they are able to obtain good results, they do not exploit the

particular goals of the pan-sharpening problem—spectral

and spatial preservation—but rather treat pan-sharpening

as a black-box deep learning problem. However, for pan-

sharpening it is clear that preserving spatial and spectral

information are the primary goals of fusion, and so deep

learning methods should explicitly focus on these aspects.

This motivates our proposed deep network called “PanNet,”

which has the following features:

1. We incorporate problem-specific knowledge about

pan-sharpening into the deep learning framework. Specif-

ically, we propagate spectral information through the net-

work using up-sampled multispectral images, a procedure

we’ll refer to as “spectra-mapping.” To focus on the spa-

tial structure in the PAN image, we train the network in the

high-pass domain rather than the image domain.

2. Our approach is an end-to-end system which auto-

matically learns the mapping purely from the data. Convo-

lutions allow us to capture intra-correlation across different

bands of the MS images and the PAN image, unlike pre-

vious (non-deep) methods. Experiments show that PanNet

achieves state-of-the-art performance compared with sev-
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Figure 2. The deep neural network structure of the proposed pan-sharpening framework called PanNet.

eral standard approaches, as well as other deep models.

3. Most conventional methods require parameter tuning

for different satellites because the range of imaging values

are inconsistent. However, training in the high-pass domain

removes this factor, allowing for training on one satellite to

generalize well to new satellites. This is not a feature of

other deep approaches, which train on the image domain.

1.1. Related work

Various pan-sharpening methods have emerged in recent

decades. Among these, the most popular are based on com-

ponent substitution, including the intensity hue-saturation

technique (IHS) [5], principal component analysis (PCA)

[20] and the Brovey transform [14]. These methods are

straightforward and fast, but they tend to succeed in approx-

imating the spatial resolution of the HRMS image contained

in PAN at the expense of introducing spectral distortions. To

fix this problem, more complex techniques have been pro-

posed, such as adaptive approaches (e.g., PRACS [8]) and

band-dependent approaches (e.g., BDSD [13]). In multi-

resolution approaches [19, 22], the PAN image and LRMS

images are decomposed, e.g. using wavelets or Laplacian

pyramids, and then fused. Other model-based methods en-

code beliefs about the relationships between PAN, HRMS

and LRMS images in a regularized objective function, and

then treat the fusion problem as an image restoration opti-

mization problem [3, 4, 7, 9, 12, 18]. Many of these algo-

rithms obtain excellent results. We choose the best among

these methods for comparison in our experiments.

2. PanNet: A deep network for pan-sharpening

Figure 2 shows a high-level outline of our proposed

deep learning approach to pan-sharpening called PanNet.

We motivate this structure by first reviewing common ap-

proaches to the pan-sharpening problem, and then dis-

cuss our approach in the context of the two goals of pan-

sharpening, which is to reconstruct high-resolution multi-

spectral images that contain the spatial content of PAN and

the spectral content of the low-resolution images.

2.1. Background and motivation

We denote the set of desired HRMS images as X and let

Xb be the image of the bth band. For the observed data, P

denotes the PAN image and M denotes the LRMS images,

with Mb the bth band. Most state-of-the-art methods treat

fusion as minimizing an objective of the form

L = λ1f1(X,P) + λ2f2(X,M) + f3(X), (1)

where the term f1(X,P) enforces structural consistency,

f2(X,M) enforces spectral consistency, and f3(X) imposes

desired image constraints on X. For example the first varia-

tional method P+XS [4] lets

f1(X,P) = ‖
∑B

b=1
ωbXb − P‖22 (2)

with ω a B-dimensional probability weight vector. Other

approaches use a spatial difference operator G to focus on

high-frequency content, for example ‖G(
∑

b ωbXb − P)‖22
or

∑
b ωb‖G(Xb − P)‖22 [3, 9, 12]. A similar structural

penalty uses a hyper-Laplacian ‖G(
∑

b ωbXb−P)‖1/2 [18].

For spectral consistency, many methods define

f2(X,M) =
∑B

b=1
‖k ∗ Xb−↑Mb‖

2
2, (3)

where ↑ Mb indicates upsampling Mb to be the same size

as Xb, which is smoothed by convolving with smoothing

kernel k [3,4,12,18]. The term f3(X) is often total variation

penalization.

A straightforward deep learning approach to the pan-

sharpening problem can leverage a plain network architec-

ture to learn a nonlinear mapping relationship between the

inputs (P,M) and the outputs X that minimizes

L = ‖fW(P,M)− X‖2F . (4)

Here, fW represents a neural network and W its parameters.

This idea is used by PNN [21], which directly inputs (P,M)
into a deep convolutional neural network to approximate X.

Although this direct architecture gives excellent results, it

does not exploit known image characteristics to define the

inputs or network structure.
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Figure 3. Example of the three model structures we considered for pan-sharpening: (left-to-right) ResNet [15], ResNet+spectra-mapping,

and the final proposed network, called PanNet. ResNet has been shown to improve CNN performance on image processing tasks, but

has drawbacks in the pan-sharpening framework. The second network captures the goal of spectral preservation, while the final proposed

network captures both spatial and spectral information. We experiment with all three, none of which have been applied to pan-sharpening.

2.2. PanNet architecture

We are motivated to build on the success of PNN in

defining PanNet. As with PNN, we also use a convolu-

tion neural network (CNN), but our specific structure dif-

fers from PNN in using the recently proposed ResNet struc-

ture [15] as our neural network. Convolutional filters are

particularly useful for this problem, since they can exploit

the high correlation across different bands of the multispec-

tral images, something shown to be useful by the SIRF al-

gorithm [7]. As with other pan-sharpening approaches, our

deep network aims to preserve both spectral and spatial in-

formation. We discuss these separately below.

The high-level idea is represented in the sequence of

potential network structures shown in Figure 3. The first

is vanilla ResNet, while the second network only focuses

on spectral information. We propose the third network

called PanNet, which performs the best. We experiment

with all three, none of which have been applied to the pan-

sharpening problem.

2.2.1 Spectral preservation

To fuse spectral information, we up-sample M and add a

skip connection to the deep network of the form

L̂ = ‖fW(P,M)+ ↑M − X‖
2

F . (5)

↑M represents the up-sampled LRMS image and fW repre-

sents ResNet, discussed later. This term is motivated by the

same goal as represented in Equation (3). As we will see,

it enforces that X shares the spectral content of M. Unlike

variational methods, we do not convolve X with a smooth-

ing kernel, instead allowing the deep network to correct for

the high-resolution differences. In our experiments, we re-

fer to this model as “spectra-mapping,” and use the ResNet

model for fW; it corresponds to the middle network in Fig-

ure 3. For PanNet, we include this spectra-mapping proce-

dure, as well as the following modification.

2.2.2 Structural preservation

As discussed in Section 2.1, many variational methods use

the high-pass information contained in the PAN image to

enforce structural consistency. These methods generate

much clearer details than the original P+XS approach which

directly uses images as in Equation (2). Based on this moti-

vation, we input to the deep network fW the high-pass con-

tent of the PAN image and of the up-sampled LRMS im-

ages. The modified model is

L = ‖fW(G(P), ↑G(M))+ ↑M − X‖2F . (6)

To obtain this high pass information, represented by the

function G, we subtract from the original images the low-

pass content found using an averaging filter. For LRMS im-

ages, we up-sample to the size of PAN after obtaining the

high-pass content. We observe that, since ↑M is low reso-

lution, it can be viewed as containing the low-pass spectral

content of X, which the term↑M−X models. This frees the

network fW to learn a mapping that fuses the high-pass spa-

tial information contained in PAN into X. We input ↑G(M)
to the network in order to learn how the spatial informa-

tion in PAN maps to the different spectral bands in X. This

objective corresponds to PanNet in Figure 3.

In Figure 4 we show an initial comparisons of the left

and right networks of Figure 3. The HRMS and LRMS im-

ages have 8 spectral bands, which we represent as an aver-

age shown in grayscale. Figure 4(c) shows the mean abso-

lute error (MAE) image of the ResNet reconstruction of (a),

while (d) shows the MAE image for the proposed PanNet.

As is evident, spectra-mapping can model spectral content

better (evident in darker smooth regions), while training a

network on the high-pass domain can preserve edges and

details. These conclusions are supported by our extensive

quantitative experiments. As mentioned in the introduction,

another advantage of training a deep network on the high-

pass domain is to remove inconsistencies between PAN and
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(a) HRMS (truth) (b) LRMS (MAE)

(c) ResNet [15] (MAE) (d) PanNet (MAE)

Figure 4. Example result on an 8-channel satellite image. (HRMS

shown as average across channels.) For LRMS, ResNet and Pan-

Net we show the MAE across these channels. We note the spectral

distortion of ResNet. (Best viewed zoomed in on computer.)

HRMS images that arise in different satellites. This is not

demonstrated here, but shown in Section 3.4.

2.2.3 Network architecture

The goal of recovering spatial information while preserving

spectral information has motivated the objective proposed

in Equation (6). In addition, previous variational methods

try to improve performance by using prior image assump-

tions [3, 7], corresponding to f3 in Equation (1). Here, we

instead take advantage of deep learning to directly learn a

function that captures the relationship between the PAN and

LRMS inputs, and the HRMS outputs.

In [15], the authors propose a Residual Network

(ResNet) for the image recognition task. While deep neural

networks can learn complex functions of data, there are still

some issues with their design.The ResNet framework was

designed to ensure that the input information can be suffi-

ciently propagated through all parameter layers when train-

ing a very deep network. We adopt the ResNet structure

with convolutional neural networks as our network model

fW in Equation (6). The convolutional operation can help to

model coupling between different bands of the multispectral

images. Accordingly, our network structure is expressed

through the following operations:

Y
1 = max(W1 ∗ stack(G(P),↑G(M)) + b

1, 0),

Y
2l = max(W2l ∗Y2l−1 + b

2l, 0),

Y
2l+1 = max(W2l+1 ∗Y2l + b

2l+1, 0) +Y
2l−1,

X ≈ W
L ∗YL−1 + b

L+ ↑M. (7)

Here, W denotes the weights and b denotes biases of the

network, l = 1, ..., L−2

2
, and Y

l represents the output of the

lth layer. For the first layer, we compute a1 feature maps

using a s1 × s1 receptive field and a rectified linear unit,

max(0, x). Filters are of size c× s1 × s1 × a1. c = B + 1,

representing the fact that we stack the B LRMS images with

the PAN image as shown in Figure 2. In layers 2 to L − 1
we compute a2 feature maps using a s2 × s2 receptive field

and a rectified linear unit. The filters are size a1 × s2 ×
s2 × a2. Finally, the last layer uses a s3 × s3 receptive

field and contains mostly spectral information. This is seen

from the fact that we add the upsampled LMRS images↑M
(spectra-mapping) to obtain an approximation to the ground

truth HRMS image X.2 Therefore, the network is modeling

high-frequency edge information not contained in↑M. The

penalty of the approximation is the Frobenius norm shown

in Equation (6).

Although the parameter layers of our architecture follow

ResNet, the two are different in the spectra-mapping pro-

cedure (bottom equation) and the high-pass inputs to the

network (top equation). We compare this PanNet frame-

work with ResNet directly applied to the image domain in

our experiments to show the clear advantage of incorporat-

ing this additional domain knowledge. (We again recall that

neither have been applied to the pan-sharpening problem.)

We also compare with the state-of-the-art PNN [21], which

uses a different deep CNN learning approach from ResNet.

3. Experiments

We conduct several experiments using data from the

Worldview3 satellite. The resolution of PAN in this satel-

lite ranges from 0.41m to 1.5m. We use stochastic gra-

dient descent (SGD) to minimize the objective function

in Equation (6). For our experiment we extract 18,000

PAN/LRMS/HRMS patch pairs of size 64 × 64. We split

this into 90/10% for training/validation. We compare with

six widely used pan-sharpening methods: PRACS [8], In-

dusion [19], PHLP [18], BDSD [13], SIRF [6, 7] and PNN

[21]. Several parameter settings were used for each and the

best performance selected.

We also experiment with the three networks of Figure 3:

ResNet [15], ResNet+spectra-mapping and our final PanNet

model. We use the Caffe package [17] to train these models.

For SGD we set the weight decay to 10−7, momentum to

2Alternatively, one could learn the upsampling from a CNN [10].
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Table 1. Quality metrics at the lower scale of different methods on 225 satellite images from WorldView3.

Algorithm Q8 QAVE SAM ERGAS SCC Time

BDSD [13] 0.871±0.010 0.867±0.013 7.158±1.909 3.631±0.621 0.856±0.032 0.2s (CPU)

PRACS [8] 0.836±0.023 0.822±0.025 6.675±1.628 3.834±0.718 0.835±0.040 0.9s (CPU)

Indusion [19] 0.799±0.017 0.799±0.015 6.385±1.544 4.340±0.699 0.825±0.026 0.4s (CPU)

PHLP [18] 0.859±0.013 0.835±0.011 5.748±0.926 3.747±0.590 0.845±0.024 18 s (CPU)

SIRF [6, 7] 0.863±0.013 0.859±0.002 6.140±1.416 3.564±0.553 0.866±0.019 27 s (CPU)

PNN [21] 0.882±0.005 0.891±0.003 4.752±0.870 3.277±0.473 0.915±0.009 0.2s (GPU)

ResNet 0.847±0.005 0.886±0.009 4.940±0.941 3.838±0.355 0.917±0.012 0.2s (GPU)

ResNet+spectra-map 0.905±0.010 0.905±0.014 4.730±0.959 2.933±0.406 0.918±0.019 0.2s (GPU)

PanNet (proposed) 0.925±0.005 0.928±0.010 4.128±0.787 2.469±0.347 0.943±0.018 0.2s (GPU)

ideal value 1 1 0 0 1

(a) LRMS (b) PAN (c) BDSD (d) PRACS (e) Indusion

(f) PHLP (g) SIRF (h) PNN (i) PanNet (proposed) (j) GroundTruth

Figure 5. Comparison of fusion results (source: WorldView3). Size of the PAN image is 400× 400.

0.9 and use a mini-batch size of 16. We start with a learning

rate of 0.001, dividing it by 10 at 105 and 2×105 iterations,

and terminate training at 2.5 × 105 iterations. We set the

network depth L = 10, the filter sizes s1 = s2 = s3 = 3
and filter numbers a1 = a2 = 32. The radius of the low-

pass averaging filter used to calculate G(P) and G(M) is 5.

It took about 8 hours to train each network.

3.1. Evaluation at lower scale

Since generally speaking HRMS images are not avail-

able in pan-sharpening datasets, we follow Wald’s proto-

col [24] for our simulated experiments. In this case, all

original images are filtered by a 7 × 7 Gaussian smooth-

ing kernel and downsampled by a factor of 4. Experiments

are conducted on these downsampled images. This way, we

can treat the original LRMS images as though they were

the ground truth HRMS images. We simulate experiments

on 225 test images from Worldview3 satellite using this ex-

perimental framework.

Each image contains eight spectral bands. For visual-

ization we only show the three color bands, but our quanti-

tative evaluation considers all spectral bands. We use five

widely used quantitative performance measures to evalu-

ate performance: relative dimensionless global error in syn-

thesis (ERGAS) [23], spectral angle mapper (SAM) [26],

universal image quality index [25] averaged over the bands

(QAVE) and x-band extension of Q8 (for 8 bands) [2], and

the spatial correlation coefficient (SCC) [27].

Table 1 shows the average performance and standard de-

viation of each method we compare with across the 225

satellite images. We observe that, not considering the net-

works of Figure 3, the deep PNN performs the best. It can
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Table 2. Quality metrics tested at the original scale of different methods on 200 satellite images from WorldView3.

Algorithm QNR Q8 QAVE SAM ERGAS SCC

BDSD [13] 0.803±0.048 0.832±0.054 0.795±0.061 5.295±1.595 5.039±1.130 0.802±0.049

PRACS [8] 0.871±0.021 0.962±0.012 0.954±0.013 2.540±0.641 2.340±0.580 0.980±0.004

Indusion [19] 0.876±0.034 0.958±0.017 0.952±0.017 2.330±0.620 2.382±0.594 0.970±0.008

PHLP [18] 0.896±0.035 0.962±0.015 0.954±0.017 2.430±0.567 2.194±0.525 0.980±0.003

SIRF [6, 7] 0.849±0.047 0.974±0.010 0.969±0.012 2.127±0.557 2.102±0.455 0.982±0.004

PNN [21] 0.880±0.022 0.946±0.028 0.938±0.026 3.284±0.596 2.758±0.659 0.979±0.004

ResNet 0.866±0.022 0.913±0.050 0.931±0.029 3.108±0.533 3.329±0.973 0.976±0.006

ResNet+spectra-map 0.891±0.017 0.974±0.010 0.969±0.012 2.234±0.526 1.895±0.517 0.989±0.003

PanNet (proposed) 0.908±0.015 0.976±0.011 0.972±0.013 1.991±0.511 1.780±0.494 0.991±0.002

ideal value 1 1 1 0 0 1

(a) LRMS (b) PAN (c) PHLP (d) SIRF (e) PNN (f) PanNet (proposed)

Figure 6. Comparison of fusion results on a subset of best performing algorithms (source: WorldView3). The size of PAN is 400× 400.

be seen that PanNet significantly improves the results of

PNN, which we believe is because of the additional fea-

tures of spectra-mapping and high resolution inputs dis-

cussed in Sections 2.2.1 and 2.2.2. We also show the feed-

forward computation time (the size of PAN is 400× 400).

On a GPU, the deep methods are very fast for practical use.

We show a specific example at the reduced scale in Figure

5. It can be seen that Indusion, PRACS and PHLP intro-

duce different levels of blurring artifacts. BDSD, SIRF and

PNN show greater spectral distortion, especially in the left

smooth area, but have good visual performance in terms of

spatial resolution. To highlight the differences, we show the

residuals of these images below in Figure 7. It is clear that

our network architecture PanNet has the least spatial and

spectral distortion when compared to the reference image,

while PNN has significant spectral distortion.

3.2. Evaluation at the original scale

Since all models require an input and output and HRMS

images are not available, we use Wald’s training strategy

outlined in Section 3.1. To asses how these above mod-

els translate to the original resolution for testing, we use

the resulting models to pan-sharpen 200 different World-

View3 satellite images at the original scale. That is, while

we trained the model in the subsampled scale to have in-

put/output pairs, we now show how this translates to test-

ing new images at the higher scale. Since we only perform

testing in this experiment, we directly input the PAN and

LRMS images into the learned PanNet model to obtain the

predicted pan-sharpened HRMS images, and similarly, for

PNN as well as the other models.

We show a typical example of the results in Figure 6.

It can be seen that Indusion, PHLP still exhibit different

degrees of burring, while BDSD introduces block artifacts.

Since we do not have the ground truth HRMS images, we

show the residuals to the upsampled LRMS images in Fig-

ure 8. This residual analysis is different from our ear-

lier experiments; since the up-sampled multispectral images

lack high-resolution spatial information but contain pre-

cise spectral information, ideals reconstructions will have

smooth regions close to zero while the edges of structures

should be apparent.

To quantitatively evaluate, we follow [6] and downsam-

ple the output HRMS images and compare with the LRMS

as ground truth. We also use a reference-free measure QNR

[1], which doesn’t require ground truth. These results are

shown in Table 2, where again we see the good performance

of PanNet. We also observe that PNN does not translate as

well from good training performance (Section 3.1) to test-

ing performance on new images at a higher resolution.

3.3. Analysis of different network structures

We assess the training and testing convergence of differ-

ent network structures, including ResNet, ResNet+spectra
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(a) BDSD (b) PRACS (c) Indusion (d) PHLP (e) SIRF (f) PNN (g) PanNet

Figure 7. The residual images for Figure 5. In general, PanNet has better spatial resolution with less spectral distortion.

(a) BDSD (b) PRACS (c) Indusion (d) PHLP (e) SIRF (f) PNN (g) PanNet

Figure 8. The residual images corresponding to Figure 6, including for some reconstructions not shown above.

mapping and PanNet, using pixel-wise MSE on the 225

training (i.e., pixel average of Equation (6)), as well as on

the 200 testing satellite images . These are shown in Figure

9 as a function of iteration. As is evident, PanNet exhibits

considerably lower training and testing error (as expected

given the previous quantitative evaluation). All algorithms

converge at roughly the same speed.
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Figure 9. Convergence of different network structures.

3.4. Generalization to new satellites

We’ve motivated PanNet as being more robust to differ-

ences across satellites because it focuses on high-frequency

content, and so networks trained on one satellite can gen-

eralize better to new satellites. To empirically show this

we compare PanNet with PNN using data from the World-

View2 and WorldView3 satellites. For our comparison, we

use two PNN-trained models: one we call PNN-WV2 which

trains the PNN model using WorldView2 data; the other

called PNN-WV3 is the model trained above on the World-

View3 dataset. We use the PanNet model trained on the

WorldView3 dataset in both cases. This section also shows

some more qualitative evaluation of PanNet’s performance.

To verify that the following results weren’t due to constant

shift in spectrum between satellites that could be easily ad-

dressed, we tested PNN using various normalizations and

obtained similar outcomes.

We show two typical visual results in Figures 10 and 11.

The first contains a WorldView2 image, and the second a

WorldView3 image. In both figures, we see that PNN does

well on the image from the same satellite used during train-

ing, but that network does not translate to good performance

on another satellite. In both figures, the cross-satellite PNN

result suffers from obvious spectral distortions. PanNet,

which is trained on WorldView3, translates much better to a

new WorldView2 satellite image. This supports our motiva-

tion that performing the proposed “spectra-mapping” proce-

dure allows the network to bypass having to model spectral

information and focus on the structural information. This

is not possible with the PNN model, which inputs the raw

image into the deep CNN and models all information.

We also considered how PanNet and PNN generalize

to a third satellite IKONOS. Since IKONOS data contains

only 4 bands, we select R,G,B and infrared bands from

WorldView3 and retrain the models. PNN-IK is trained on

IKONOS, while PNN-WV3 is trained on the WorldView3

data using the same four bands as PanNet. As shown in

Figure 12, although PNN-IK trains directly on IKONOS,

our method still has clearer results. In the corresponding

LRMS residual images in Figure 13, our method preserves

spectral information (less color difference in smooth re-

gions) and achieves better spatial resolution (clearer struc-

tures around edge regions). Again this supports that using a

high-pass component to train PanNet can remove inconsis-

tencies across different satellites.
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(a) PNN-WV2 [21] (b) PNN-WV3 (c) PanNet (proposed) (d) Ground Truth

Figure 10. Example of network generalization (test on WorldView2). PNN-WV3 does not transfer well to WorldView2 image.

(a) PNN-WV2 [21] (b) PNN-WV3 (c) PanNet (proposed) (d) Ground Truth

Figure 11. Example of network generalization (test on WorldView3). PNN-WV2 does not transfer well to WorldView3 image.

(a) PNN-IK [21] (b) PNN-WV3 (c) PanNet (proposed) (d) LRMS

Figure 12. Example of network generalization (test on IKONOS).

(a) PNN-IK (b) PNN-WV3 (c) PanNet

Figure 13. The residual to the LRMS images. Our method pre-

serves spectral information (less color difference in smooth re-

gions) and achieves better spatial resolution (clearer structures

around edge regions). This, and Figures 10–12, show that Pan-

Net is fairly immune to inconsistencies across different satellites.

4. Conclusion

We have proposed PanNet, a deep model motivated by

the two goals of pan-sharpening: spectral and spatial preser-

vation. For spectral preservation, we introduce a technique

called “spectra-mapping” that adds upsampled LRMS im-

ages to the objective function, allowing the network to focus

only on details in the image. For spatial preservation, we

train network parameters on the high-pass components of

the PAN and upsampled LRMS images. We use ResNet as

a deep model well-suited to this task. Compared with state-

of-the-art methods, including PNN and vanilla ResNet, Pan-

Net achieves significantly better image reconstruction and

generalizes better to new satellites.
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