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a b s t r a c t

We propose a straightforward and efficient fusion-based method for enhancing weakly illumination
images that uses several mature image processing techniques. First, we employ an illumination esti-
mating algorithm based on morphological closing to decompose an observed image into a reflectance
image and an illumination image. We then derive two inputs that represent luminance-improved and
contrast-enhanced versions of the first decomposed illumination using the sigmoid function and
adaptive histogram equalization. Designing two weights based on these inputs, we produce an adjusted
illumination by fusing the derived inputs with the corresponding weights in a multi-scale fashion.
Through a proper weighting and fusion strategy, we blend the advantages of different techniques to
produce the adjusted illumination. The final enhanced image is obtained by compensating the adjusted
illumination back to the reflectance. Through this synthesis, the enhanced image represents a trade-off
among detail enhancement, local contrast improvement and preserving the natural feel of the image. In
the proposed fusion-based framework, images under different weak illumination conditions such as
backlighting, non-uniform illumination and nighttime can be enhanced.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In weakly illuminated environments, the quality of images and
video captured by optical imaging devices are often degraded. This
can reduce the performance of particular systems, such as those
used in intelligent traffic analysis, visual surveillance, and con-
sumer electronics. For example, the low lighting conditions in
nighttime environments can produce images and video with low
contrast, reducing visibility. Another example is backlighting,
where objects and details cannot be simultaneously captured in
both bright regions (background) and dark regions (foreground)
because of limitations in the exposure setting of many imaging
systems [1].

In this paper, we present a fusion-based method for enhancing
weakly illuminated images that can handle different weak illu-
mination settings within the same framework. There are three
main contributions of our method. First, our method is applicable
to singles image, which differs from several other fusion techni-
ques that require multiple images of the same scene to perform
fusion [2–4]. Second, we propose a simple illumination estimating
algorithm based on morphological closing. This estimated illumi-
nation represents the naturalness and luminance. Third, we pro-
pose an effective fusion-based algorithm to adjust the estimated
illumination. In the fusion stage, different mature techniques can
be directly adopted to generate different results, then different
advantages of these results can be blended to obtain an enhanced
image. Practically speaking, using simple and mature algorithms in
the proposed way allows ensures for simple updating of existing
systems. Since most calculations are at the pixel-level, the pro-
posed method is computationally very efficient. Before giving an
overview of the proposed method in Section 1.2, we give a review
of the main approaches and major techniques to the image en-
hancement problem.

1.1. Related work

Many image enhancement techniques have been proposed to
improve the quality of degraded images captured in varying cir-
cumstances. Three major approaches include histogram-based
methods [1,5–14], Retinex-based methods [15–21] and filtering-
based methods [22–28]. We briefly review these below, as well as
potential shortcomings that we aim to address in our proposed
algorithm.

Methods based on histograms aim to generate an output image
having a histogram with a desired shape. Some conventional his-
togram-based methods, such as histogram equalization (HE) [5]
and contrast-limited adaptive histogram equalization (CLAHE) [6],
are widely used because of their simplicity and effectiveness in
enhancing low contrast images, but can lead to contrast over-en-
hancement and noise amplification [11]. This is because HE-based
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methods assume that the target histogram is uniformly distributed
and mechanically stretch the dynamic range without paying at-
tention to the shape of input histogram. When high peaks exist in
input histograms, the enhanced result by HE may appear un-
natural or have artifacts. Recently, a global contrast enhancement
algorithm was proposed that uses spatial information to preserve
the shape of the input histogram and suppress over-enhancement
[13]. Variational methods [9,10] use different regularization terms
on the histogram. For example, in [10] contextual and variational
contrast enhancement (CVC) is performed by a histogrammapping
that emphasizes large gray-level differences. The method of [10]
was improved by using a layered difference representation (LDR)
of 2-D histograms [1]. However, variational methods tend to fail on
images with very dark regions since the stretching range of his-
togram is constrained in the model.

In Retinex theory [29], the image is taken to be a product of
reflectance and illumination. Some Retinex-based algorithms take
the reflectance as the enhanced result by estimating and removing
illumination. The representative algorithms such as the single-
scale Retinex (SSR) [15] and the multi-scale Retinex (MSR) [16] use
local Gaussian filters to separate reflectance and illumination.
Details and luminance can be improved by eliminating the influ-
ence of illumination, but results obtained by such center/surround
approaches are often over-enhanced; since the human visual
system reduces the dynamic range of scenes rather than fully re-
moving the illumination, illumination is arguably essential to a
natural representation [17,20]. The “naturalness-preserving en-
hancement algorithm” (NPEA) addresses this issue in non-uni-
formly illuminated images [20] by first designing a bright-pass
filter to estimate the illumination, and then proposing a bi-log
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Fig. 1. Overview of the proposed method. The original image is decomposed into illum
These three inputs are weighted and then blended together by adopting a multi-scale s
transformation to adjust the illumination.
A final set of methods are based on image filtering. In [22], a

globally optimized linear windowed (GOLW) tone mapping algo-
rithm compresses high dynamic range using local linear filtering.
This method is not intended for the extremely weak illumination
setting, such as nighttime and backlighting, and is also computa-
tionally intensive. In [23], the authors propose a generalized un-
sharp masking (GUM) algorithm in which they decompose an
image into high-frequency and low-frequency parts for separate
processing. Other approaches include [24], where an automatic
exposure correction is performed on image regions, and [25],
where illumination from a naturally-lit image and details from a
flash image are combined for image enhancement.

1.2. Overview of proposed method

We focus on the case of image enhancement in very weakly
illumination conditions. Our goal is to develop a fast and effective
fusion method that blends the advantages of different mature
image processing techniques. Before giving more details in Section
3, we outline the main idea of the proposed method below and
depict an overview of the proposed method in Fig. 1.

First, we propose an algorithm for estimating illumination
based on a morphologically closing operation. This step is inspired
by the previous Retinex-based method [20], which estimates the
illumination using a bright-pass filter. However, the filtering op-
eration requires a high computational time, which is not suitable
for practical applications. In contrast, the proposed algorithm
calculates the illumination efficiently with fewer parameters. The
estimated illumination effectively represents the naturalness and
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luminance for further processing in our method.
Second, we propose a fusion-based enhancement algorithm to

adjust the illumination. Since many mature methods have specific
enhancing effect and are easy to implement, e.g., CLAHE [6] en-
hances local contrast and can be accelerated using interpolation
techniques, their respective advantages should be combined. We
derive two new inputs that represent an improved global lumi-
nance and an enhanced local contrast of the estimated illumina-
tion, and then attempt to blend the advantages of each into a
single output. To this end, we design two weights for fusion where
higher value is assigned to pixels that play a more essential role to
the quality of the desired image according to a quality measure.
We also introduce a multi-scale framework to avoid artifacts. The
final enhanced image is generated by combining the adjusted il-
lumination with the reflectance.

The rest of this paper is organized as follows. Section 2 briefly
describes the motivation of the proposed algorithm. The algorithm
is detailed in Section 3. Performances of the proposed method are
evaluated both quantitatively and qualitatively in Section 4. We
conclude in Section 5.
2. Motivation

For weakly illuminated images, a natural and intuitive way to
solve this problem is simply to adjust illumination since it is linked
to the naturalness of the image [20] and the Human Vision System
is sensitive to variations in luminance [30]. In other words, both
the objective (detail enhancement) and subjective (naturalness)
quality of the image is linked to its illumination. However, for
some illumination-estimating algorithms based on Retinex theory,
parameters are not easily designed [17,18], while other methods
Fig. 2. Enhancement results and corresponding histograms using different methods. (a
(f) proposed method.
require a high computation time due to solving a large set of linear
equations [19] or employing patch-based filtering [20]. Hence the
first important task is to estimate the illumination effectively and
efficiently.

The second task is to properly adjust the estimated illumination
for weakly illuminated images. As is well-known, image quality
assessment is related to the Human Vision System, which is sen-
sitive to luminance and contrast [31]. However, local contrast may
be reduced when global luminance is compressed to enhance dark
regions in an image. Therefore, finding a trade-off between lumi-
nance and contrast is an important criterion for enhancing images.
As shown in Fig. 2(b) and (c), dynamic range compression by
gamma correction and the sigmoid function can produce images
where global luminance improves, but local contrast is reduced. In
the other direction shown in Fig. 2(d) and (e), global and local
contrasts are enhanced by histogram equalization (HE) [5] and
contrast-limited adaptive histogram equalization (CLAHE) [6] at
the cost of enhancing dark regions. Our goal is to combine these
methods such that their strengths are used, while their short-
comings are suppressed. The enhanced result in Fig. 2(f) illustrates
the effectiveness of this proposed fusing strategy. The corre-
sponding histogram shows that the histogram is well-stretched
while still preserving its original shape.
3. Proposed fusion-based algorithm

The fundamental idea of the proposed fusion-based approach is
to blend several inputs and weights derived from a single esti-
mated illumination. As discussed above, the three criteria for en-
hancing weakly illuminated images are global luminance im-
provement, local contrast enhancement and preservation of
) Original image; (b) gamma correction; (c) sigmoid function; (d) HE; (e) CLAHE;
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naturalness. Hence inputs and weights are designed and processed
based on these criteria. Four main steps constitute the proposed
enhancing algorithm corresponding to the next four subsections:
(1) illumination estimation, (2) input derivation, (3) weight defi-
nition and (4) multi-scale for input and weight fusion. We describe
these separately below.

3.1. Step 1: Illumination estimation

For weakly illuminated images we use the simplified physical
model of light reflection. According to Retinex theory [29], a
captured image is the product of reflectance and illumination
written as

( ) = ( ) ( ) ( )S x y R x y I x y, , , , 1c c

where S is the measured image, R is the reflectance, I is the illu-
mination, c is the color channel of RGB (red, green, blue) space and
(x,y) is the pixel location. For simplicity, the three color channels
are assumed to have the same illumination so that the color in-
formation is preserved in the reflectance. We aim to take into
account the fact that the illumination contains information about
luminance variance and naturalness [20] and the common as-
sumption that illumination is locally smooth [17–19].

Many techniques exist for estimating the illumination and re-
flectance layers. For example, Li and Brown [32] propose a fast
separation method by building two likelihoods from the gradient
histograms. This method decomposes an image into a smooth
layer and a detail layer, which removes reflection interference; Li
et al. [33] decompose an image into a structure layer and a texture
layer to simultaneously enhance contrast and suppress jpeg
artifacts.

Inspired by the dark channel prior [34], which calculates the
local minimum in the three color channels for image dehazing, we
propose the following illumination estimating algorithm. First we
obtain an image lightness from the maximum value of its three
color channels to represent luminance variance, which we can
write as

( ) = ( )
( )∈{ }

L x y S x y, max , .
2c R G B

c

, ,

This operation is the reverse of the first step for obtaining the dark
channel, which finds the minimum of the three color channels.

Second, since the illumination is locally smooth [19,20], some
filter operations should be adopted to refine L. The authors of the
dark channel further use the minimum filter in an overlapped
pattern to obtain the final dark channel image. However, this op-
eration requires a high computational time. Since our goal is to
develop an enhancing method that is computationally in-
expensive, we wish to avoid using such computationally intensive
methods such as those in [34,19,20]. To achieve both local
smoothness and computational efficiency, we propose a simple
but effective algorithm for illumination estimation by using a
morphologically closing operation:

= •
( )I

L P
255

, 3

where P denotes the structuring element and • is the closing op-
eration. Dividing by 255 is used to map the range to [ ]0, 1 for the
downstream operations. The morphologically closing operation
smooths an image by fusing narrow breaks and filling gaps on the
contours without over smoothing to produce halo effect. Through
the observation of our experiments, choosing disk as the struc-
turing element can obtain the best result. This operation is mature
and easily implemented for practical applications [35].

The illumination can be effectively estimated by Eq. (3). We
refine the estimated illumination with a guided filter [36] to
preserve the shape of large contours. The filtering output is ex-
pressed as a weighted average at a pixel i:

∑← ( )
( )

I W g I ,
4

i
j

ij j

where i and j are pixel indexes, W is the filter kernel that is a
function of the guidance image g. We use the kernel

∑
ω
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where ωk is a window centered at the pixel k and ω is the number
of pixels in the window, μk and sk

2 are the mean and variance of g,
ε is a regularization parameter. In this paper, the guidance image g
is the V layer in HSV color space of the input image S.

3.2. Step 2: Inputs derivation

In our proposed fusion-based approach, three inputs are de-
rived from the estimated illumination. The first input, I1, is the
original estimated illumination I. This contains information about
the original structure of the image that allows us to avoid distor-
tion. For example, the sky region in the top image in Fig. 3 pro-
vides good contrast information.

The second input I2 is designed to address the global luminance
in order to help clarify the dark regions of the image. Many en-
hancing operators and functions can be adopted to improve global
luminance, such as gamma correction and the sigmoid function. In
this work, we compute the second input by using the arc tangent
transformation of I:

π
λ( ) = ( ( )) ( )I x y I x y,

2
arctan , , 62

where λ is a parameter that controls the degree of luminance.
Multiplication by π2/ maps the range to [ )0, 1 . Since different
images have different degrees of luminance, λ should be changed
adaptively. Thus an automatic λ setting is introduced based on our
experiments:

λ = +
−

( )
I

I
10

1
,

7
mean

mean

where Imean is the mean of estimated illumination I. It is obvious
that a smaller Imean indicates a darker luminance, and thus a higher
λ is obtained to make a higher level of the enhancement.

Since the dynamic range is compressed after improving global
luminance, local contrast is reduced (see the middle-left image in
Fig. 3). Thus, the third input, I3, is designed to enhance local con-
trast by using “contrast local adaptive histogram equalization”
(CLAHE) [6], which we apply directly to the estimated illumination
I. CLAHE is useful for expanding the local contrast between ad-
jacent structures. Additionally, this method is mature and can be
accelerated using interpolation techniques. We therefore select
CLAHE over other more complex methods, which may also be used
to generate the third input. As the bottom-left image shows in
Fig. 3, CLAHE enhances local contrast at the cost of reducing global
luminance.

3.3. Step 3: Weights definition

The next step involves designing weights for fusing the three
input images derived above. We design pixel-level weights for
fusion.

A brightness weight WB assigns high values to well-exposed
pixels. A high quality image should have a natural-looking
brightness, i.e., be neither too bright (over-exposed) nor too dark
(under-exposed). To support this, we statistically evaluated 2000
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Fig. 3. Derived images and corresponding normalized weights: Brightness weightWB, chromatic weight WC and W̄ . To better demonstrate the complementary impact, three
derived inputs multiply reflectance and weights W̄ are shown in pseudo-color. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 4. Statistics of brightness. (a) Histogram of the mean intensity of each estimated illumination; (b) histogram of the standard deviation of each estimated illumination;
(c) histogram of the 2000 estimated illuminations.
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well-exposed images from Google image. Using the illumination
image of each obtained according to the previous section, we
calculated the mean, the standard deviation and the histogram of
the illumination values for each of 2000 images. As shown in
Fig. 4, the mean of the mean approximately equals 0.5 and the
mean of the standard deviations approximately equals 0.25 after
mapping the range to [ ]0, 1 . Based on this observation, we set the
brightness weight to be

( )
( )

( ) = −
( ) −

( )

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

W x y
I x y

, exp
, 0.5

2 0.25
,

8
B k

k
,

2

2

where k denotes the kth derived input discussed in the previous
section. A high value of WB means a well-exposed pixel, while a
low value of WB is associated with a over- or under- exposed pixel.
(See the second column in Fig. 3.)
A second weight, which we call the chromatic contrast weight
WC, evaluates the contrast by combing the estimated illumination
with chromatic information. Color contrast is an important feature
of image quality [37]. This weight is computed based on the
chromatic filtering formula [38],

α ϕ( ) = ( )( + ( ( ) + ) ( )) ( )W x y I x y H x y S x y, , 1 cos , , , 9C k k,

where H is the hue and S is the saturation in HSV color space of the
original input color image. The parameter α is used to preserve the
color opponency and ϕ represents the offset angle of the color
wheel. According to [38], we set α = 2 and ϕ = °250 to preserve
the most salient regions. The impact of this weight is to highlight
regions containing high contrast caused by both illumination and
color. (See the third column in Fig. 3.)

We use these two weights to calculate a third weight Wk,
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( ) = ( ) ( ) ( )W x y W x y W x y, , , . 10k B k C k, ,

We then normalize this to give the final weight,

¯ ( ) =
( )

∑ ( ) ( )
W x y

W x y
W x y

,
,

,
.

11
k

k

k k

Fig. 3 shows the final weights W̄k for the respective Ik. As is evident,
each Ik has “good” regions and “bad” regions according to these
weights. For example, the sky region in inputs I1 and I3, and people
in I2 will be combined for global luminance improvement, and
high contrast regions in I3 will be used for local contrast
enhancement.

3.4. Step 4: Multi-scale fusion

We use the above information to obtain the adjusted illumi-
nation as follows,

∑( ) = ¯ ( ) ( )
( )

I x y W x y I x y, , , .
12

fusion
k

k k

Since the sum of each W̄k equals 1, the result's intensity scale is
guaranteed to be the same as the inputs.

However, as shown in Fig. 5(b), the naive fusing of Eq. (12)
produces visually disappointing artifacts in the enhanced result.
This is mainly caused by strong transitions of the weight maps. To
overcome this limitation, multi-scale linear [39] or non-linear fil-
ters [40] are commonly adopted. The non-linear filters (e.g. WLS
[40]) generate similar result while requiring a complex computa-
tion. To improve the fused result, a multi-scale pyramidal techni-
que [39] is adopted. In [39], based on the Laplacian operator, each
input image is represented as a sum of patterns computed at dif-
ferent scales. The inputs are convolved by a Gaussian kernel to
generate a low pass filtered versions. In our case, we decompose
each derived input Ik into a Laplacian pyramid to extract image
features, and each normalized weight W̄k into a Gaussian pyramid
to smooth the strong transitions. This method is effective since it
blends image features instead of intensities. Moreover, both the
Laplacian and Gaussian operators are mature techniques, which
are easy to implement in practical applications.

Both the Gaussian and Laplacian pyramids have the same
number of levels. We then fuse the pyramids by mixing each level
of the Gaussian and Laplacian pyramids, written as

∑( ) = { ¯ ( )} { ( )}
( )

F x y G W x y L I x y, , , ,
13

l
k

l k l k

where l is the number of the pyramid levels, set equal to 6 in this
paper, { }L Ik is the Laplacian version of the derived input Ik and

{ ¯ }G Wk is the Gaussian version of the normalized map W̄k. Each
pyramid layer is successively obtained in a bottom-up way. The
refined adjusted illumination is computed by summing each level
of the fused pyramid,
Fig. 5. Example of fusion strategies. (a) Input image; (b) enhanced r
∑( ) = ( ( ))
( )

I x y U F x y, , ,
14

final
l

d l

where Ud is the up-sampling operator with factor = −d 2l 1. The final
enhanced color image is generated by compensating the adjusted
illumination back to the reflectance,

( ) = ( ) ( ) ( )S x y R x y I x y, , , . 15enhanced
c c

final

In Fig. 5(c) we show the results of our fusion approach using this
multi-scale technique.
4. Experiments and discussion

We present experimental results to demonstrate the perfor-
mance of the proposed fusion method. We ran all experiments
using Matlab R2014a on a PC with a 2.60 GHz Intel Pentium Dual
Core Processor and 4G RAM. More enhanced image/video results
and the Matlab source code can be found on our website: http://
smartdsp.xmu.edu.cn/weak-illumination.html.

4.1. Comparisons with other methods

We first present our qualitative and quantitative comparisons.
In the next subsection we follow this with a more detailed em-
pirical analysis of the proposed method itself.

4.1.1. Qualitative assessments
We tested a large number of images under different weak il-

lumination conditions. We show five representative images below,
including those with backlighting, low light and non-uniform il-
lumination. All other images can be found on the website given
above. We compare the proposed method with six other image
enhancement methods: two Retinex-based methods, MSR [16]
and NPEA [20], two histogram-based methods, CVC [10] and LDR
[1], and two filtering-based methods, GUM [23] and GOLW [22].
The major parameters of the compared methods are set as follows:
for MSR, patch sizes of the three Gaussian functions are respec-
tively set to 15, 80, and 250. For CVC, the parameters are set to
α γ= = 1/3, β = 2 and a 7�7 patch size is used. For LDR, the
controllable parameter is set to 2.5. For GUM, the maximum gain is
set to 5 and the contrast enhancement factor is set to 0.005. For
GOLW, the patch size is set to 3�3, the parameters are set to
β β β= = =0.4, 0.2, 0.051 2 3 . In-depth descriptions of these para-
meters are given in their respective papers. In the proposed
method, the structuring element of closing operation is disk and
the patch size is 7�7.

Figs. 6 and 7 show the results of back-lit images, in which a
bright background and dark foreground exist in the same scene.
Certain details and objects in dark regions cannot be captured
clearly while the image has a wide dynamic range. As can be seen
esult by naive fusion; (c) enhanced result by multi-scale fusion.

http://smartdsp.xmu.edu.cn/weak-illumination.html
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Fig. 6. Results of “Street” image. (a) Input image; results of (b) MSR; (c) NPEA; (d) CVC; (e) LDR; (f) GUM; (g) GOLW; (h) proposed method.
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in the results of the “Street” image in Fig. 6, LDR and GUM algo-
rithms cannot handle dark regions properly. This is because the
three algorithms aim to enhance contrast at the cost of improving
luminance. Meanwhile GUM creates an unnatural appearance due
to over-enhancement, such as in the sky region. The luminance of
results yielded by MSR, NPEA, CVC and GOLW are improved and
Fig. 7. Results of “Woman” image. (a) Input image; results of (b) MSR; (c
details can be seen clearly.
For the “Woman” image in Fig. 7, all compared methods are

unsuccessful at enhancing the dark regions on the woman's
clothing except MSR and NPEA. However, NPEA's result shows a
white appearance because it over-compresses the illumination. All
results produced by MSR are gray and of unnatural appearance
) NPEA; (d) CVC; (e) LDR; (f) GUM; (g) GOLW; (h) proposed method.



Fig. 8. Results of “Girl” image. (a) Input image; results of (b) MSR; (c) NPEA; (d) CVC; (e) LDR; (f) GUM; (g) GOLW; (h) proposed method.
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since the illumination is completely removed. Comparatively, the
proposed method enhances the dark foreground while maintain-
ing the bright background without introducing artifacts.

Fig. 8 shows a non-uniformly illuminated image in which both
Fig. 9. Results of “Nighttime” image. (a) Input image; results of (b) MSR; (
dark and bright areas coexist in one region, as shown on the girl's
clothing. It is clear that CVC and GUM create results with over-
stretched contrast. LDR maintains naturalness while failing to
improve dark areas. MSR provides an enhanced result that over-
c) NPEA; (d) CVC; (e) LDR; (f) GUM; (g) GOLW; (h) proposed method.



Fig. 10. Results of “Snacks” image. (a) Input image; results of (b) MSR; (c) NPEA; (d) CVC; (e) LDR; (f) GUM; (g) GOLW; (h) proposed method.
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enhances in areas and so loses some details, such as the bright
regions on the girl's skirt. NPEA and GOLW compress the dynamic
range to lighten dark regions and give bad contrast. We consider
these drawbacks to be addressed well by our proposed method.

Figs. 9 and 10 show images that suffer from low light condi-
tions. As with back-lit images, GUM algorithms fails to fully
highlight objects in the dark regions. The results by LDR and the
proposed method look similar, when the overall brightness is
close. This is because the LDR method aims to enhance the global
contrast. When the overall brightness is dark, LDR can effectively
utilize the whole dynamic range and map low pixel intensities to
high pixel intensities. However, when an input image has a high
dynamic range, such as Fig. 6, LDR method may fail to enhance the
image since the dynamic range is already wide enough. Both in the
“Nighttime” image and the “Snacks” image, GOLW generates an
obvious overly-enhanced result. Results processed by MSR, NPEA
and CVC have a decent appearance at highlighting unclear objects.
However, the results are too bright for visual perception especially
in the “Nighttime” image. The proposed method appears to resolve
these issues.

In summary, compared with other methods, the proposed al-
gorithm subjectively appears as an improvement for processing
weakly illuminated images. By blending features from the various
derived inputs, all enhanced results achieve a good trade-off
among luminance improvement, contrast enhancement and nat-
uralness preservation.

4.1.2. Quantitative assessments
Since image assessment is closely related to human visual

perception, it is difficult to find a universal measure to quantify the
quality of an enhanced image. In general, image quality assess-
ment (IQA) can be classified into those that are full reference and
Table 1
GMSD (G) and NIQE (N) value comparison for different algorithms and images.

Image Original MSR NPEA CVC

G N G N G N G N

Street – 2.87 0.04 2.56 0.04 2.37 0.30 2.4
Woman – 3.09 0.04 2.78 0.04 2.64 0.30 2.2
Nighttime – 3.37 1.30 2.69 0.92 2.8 1.00 2.6
Snacks – 4.24 5.05 3.37 3.20 3.38 4.70 3.3
Girl – 3.08 0.00 3.59 0.00 2.76 0.40 2.8
Average – 3.33 1.29 3.00 0.84 2.79 1.34 2.7
no reference. In this paper, we select one full reference IQA and
one no reference IQA for quantitative evaluation. For the full re-
ference IQA we use the gradient magnitude similarity deviation
(GMSD) metric [41] to evaluate visual distortion between the
original and enhanced images. The lower a GMSD value is, the less
visually distorted it is. For the no reference IQA we use the natural
image quality evaluator (NIQE) blind image quality assessment
[42]. This metric is based on statistical regularities that are derived
from natural and undistorted images. A lower NIQE value re-
presents a higher image quality. Table 1 lists both GMSD and NIQE
values for several images. As can be seen, the proposed method
has the lowest average in both of the two metrics, which indicates
that the enhanced images have the smallest distortion and best
natural appearance.

4.1.3. User study
To quantify the subjective evaluation of our method, we con-

structed an independent user study. In this experiment, we use 40
different kinds of weakly illumination images and enhance them
using [1,10,16,20,22,23] and our proposed method. For each test
image, we randomly order the outputs of the seven algorithms and
the original image and display them on a screen. We separately
asked 10 participants to select the image that he/she thinks has
the best visual quality. From these 400 total trails, the percentage
of times a viewer selected the output of the proposed method is
77.5%. Input images and other six methods [1,10,16,20,22,23]
correspond to 0.75%, 1.75%, 2.5%, 1%, 13.25%, 2% and 1.25%, re-
spectively. This small-scale experiment gives additional support
for our conclusions in the qualitative evaluation.

4.1.4. Comparison of computational cost
The computational running time of the different algorithms is
LDR GUM GOLW Proposed

G N G N G N G N

1 0.61 2.60 0.17 3.22 0.04 2.21 0.04 2.37
2 0.37 2.66 0.21 3.25 0.78 2.65 0.04 2.51
7 0.60 2.51 0.92 3.63 1.00 2.60 0.90 2.43
7 2.67 3.87 4.88 3.76 3.64 3.36 2.85 3.33
1 0.47 3.32 0.04 2.95 0.03 3.04 0.00 2.68
0 0.94 2.99 1.24 3.62 1.10 2.77 0.77 2.66



Table 2
Computation time (s) in seconds of each algorithm.

Image size MSR NPEA CVC LDR GUM GOLW Proposed

300�400 0.67 7.35 6.64 0.15 0.53 7.62 0.59
600�800 1.75 27.90 25.62 0.34 0.96 30.95 1.17
1200�1600 4.40 111.60 103.29 0.93 2.07 131.91 2.94
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shown for different image sizes in Table 2. The proposed method
requires a slightly longer running time than LDR [1] and GUM [23],
while significantly less time than CVC [10], NEPA [20] and GOLW
[22]. We mention that our implementation is in Matlab using a
straightforward optimization, and so can be further accelerated
using faster programming languages and computing devices, such
as Graphic Processing Unit (GPU).
Fig. 11. Comparison using various degrees of brightness. From left t
4.1.5. Comparison of various degrees of brightness
In Fig. 11, we make a further comparison using various degrees

of brightness. We apply a global brightness adjustment to generate
test images with different brightness (i.e., multiplying the V layer
by 1

2
, 1

4
and 1

8
). As can be seen, MSR [16] improves visibility while

distorting color. As the global brightness darkens, LDR [1] and
GUM [23] fail to improve the visibility and the building cannot be
seen clearly. Meanwhile, CVC [10] generates obvious over-en-
hanced results when the brightness darkens. On the contrary,
NEPA [20], GOLW [22] and the proposed method generate con-
sistent well-enhanced results that are comparable with the pro-
posed method.

4.1.6. Comparison with other fusion-based methods
In Fig. 12, we compare our algorithm with two other fusion-
o right, the V layer is multiplied by 1, 1
2
, 1

4
and 1

8
, respectively.



Fig. 12. Comparison with other fusion-based methods. (a)–(c) Input image sequence with different exposures; (d) method [3]; (e) method [43] that uses (b) as the input;
(f) the proposed method that uses (b) as the input.
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based methods [3,43]. These three methods all use the same
multi-scale fusion technique to avoid artifacts. The major differ-
ence between the proposed method and [3,43] is that we estimate
and fuse the illumination, while methods [3,43] implement the
fusing operation directly on the image. Method [3] requires mul-
tiple images of varying exposures (shown in Fig. 12(a)–(c)) as well
as three weights – contrast, saturation and exposure – to generate
the enhanced result (Fig. 12(d)). Method [43] requires a single
observed image and fuses two derived inputs – color correction
and contrast improvement – to remove haze. However, this
method is not suitable for weakly illuminated images, as shown in
Fig. 12(e), since weakly illuminated and hazy images have different
characteristics. The proposed method can generate a similar result
(Fig. 12(f)) with method [3] while requiring only one input.

As another comparison, we use a single input image and gen-
erate two inputs using I2 and I3 as mentioned in Section 3. As can
be seen in Fig. 13(d), the method of [3] has a slight over-en-
hancement in the sky region, which is not present in the proposed
method in Fig. 13(f). Method [43] fails to enhance the image.
Fig. 13. Comparison with other fusion-based methods. (a) Input image; (b) derived input
[43]; (f) proposed method.
We also test the impact of fusing the reflectance and illumi-
nation layers by using the gradient based fusion method [44]. As
shown in Fig. 14(b) and (e), the gradient based method obviously
boosts edge details. However, the global visual effect is not sa-
tisfactory due to the over-enhancement. On the contrary, our di-
rectly fusing results have a natural appearance while details are
appropriately enhanced. This is mainly because our initial image
model follows Retinex theory, which corresponds to the direct
multiplication of the reflectance and the illumination (Eq. (1)).

4.2. Experiments analyzing the method itself

We next investigate the different aspects of our algorithm to
better understand how it performs.

4.2.1. Analysis of the impact of Ik
To better understand complementary relationships among the

three illuminations, results processed with different Ik are shown
in Fig. 15. As can be seen in Fig. 15(a), the result using I1 and I2 has
using I2; (c) derived input using I3; (d) method [3] using (a), (b) and (c); (e) method



Fig. 14. (a) and (d) Input images; (b) and (e) results of fusing reflectance and illumination by method [44]; (c) and (f) results of fusing reflectance and illumination by Eq. (1).
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an improved global luminance while local contrast is not en-
hanced. Also, the white sky region is over-enhanced since I3, which
represents the local contrast enhancement, is not used. In Fig. 15
(b), by only using I1 and I3 local contrast is enhanced while the
result is dark and objects cannot be seen clearly. This is because
the improved global luminance I2 has the highest impact on the
visibility. Fig. 15(c) is visually approaching the proposed method in
Fig. 15(d) since I1 is the original estimated illumination used to
avoid distortion.

4.2.2. Analysis of detail preservation
In this test, the effect of details preservation is discussed. As

mentioned in Section 3, the proposed method decomposes one
image into reflectance and illumination, with details contained in
the reflectance. By properly adjusting the illumination, details can
be preserved and emphasized in the enhanced image. To de-
monstrate this, we compare the proposed method with a method
that enhances locally in the gradient domain [27]. As shown in
Fig. 16, both methods can improve visibility in dark regions, but
the proposed method has a slightly better preservation of details.
Method [27] over-enhances the image, making the details less
clear. We believe our method benefits in this case by only ad-
justing illumination and keeping details in the reflectance.

4.2.3. Color distorted images
For color distorted images, the assumption that three color

channels have the same illumination is inappropriate. As shown in
Fig. 17(b), the directly enhanced results have an unsatisfactory
visual effect due to color distortion. This problem can be addressed
by adopting some mature color constancy methods as a pre-
Fig. 15. Impact of each illumination Ik on the final result. (a) Using I1
processing step. Fig. 17(c) shows the results generated by using the
gray-world color constancy algorithm [45] with the proposed al-
gorithm. As can be seen, not only color is corrected but also
lightness and contrast are improved. Therefore, our fusion method
works well in combination with such color-correcting algorithms.

4.2.4. Noise suppression
One important problem of enhancing weakly illumination

images is that noise is easily amplified, especially in dark regions.
Since our method decomposes the image into the reflectance and
the illumination in the first step, the noise is contained in the
reflectance due to the smooth illumination. Some mature denosing
algorithms can be directly applied in the reflectance to suppress
noise. In this test, the famous denoising algorithm BM3D [46] is
used to suppress the noise in the reflectance. The image in Fig. 18
(a) is contaminated with additive white Gaussian noise with σ = 5.
As can be seen in Fig. 18(c) and (g), the directly enhanced result
has an obvious noise amplification. While the proposed method
combined with BM3D can suppress noise without losing enhan-
cing effect, as shown in Fig. 18(d) and (h).

4.3. Extensions

Our method can also be used in post-processing the outputs of
other algorithms, which we discuss here.

4.3.1. Post-processing of haze removal
The proposed enhancing algorithm is also suitable for post-

processing the output of other enhancement algorithms that ad-
dress other deficiencies in an image. As an example, consider the
and I2, (b) using I1 and I3, (c) using I2 and I3, (d) using I1, I2, I3.



Fig. 16. Details preservation. (a) Input image; (b) method [27]; (c) proposed method; (d)–(f) enlargements of (a)–(c) in the red rectangles. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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popular de-hazing algorithm based on the dark channel prior
(DCP) [34]. As shown in Fig. 19(b) and (f), though the method of
[34] effectively removes haze, the restored results have a dim
appearance and certain objects cannot be seen clearly. By adding
the proposed method as a post-processing technique for DCP, both
the luminance and contrast have an obvious improvement; objects
and details are more prominent, such as the people in Fig. 19
(d) and the train in Fig. 19(h). We also compare our results with a
state-of-the-art de-hazing method [47], shown in Fig. 19(c) and
(g), which use the gamma correction for post-processing. It is clear
that our result has a better luminance and contrast than method
[47]. This experiment demonstrates that the proposed algorithm
can further improve the visual qualities of de-hazing algorithms.

4.3.2. Generality of proposed fusion framework
Since the basic idea of this work is to effectively blend features,

different complementary algorithms can be directly fused in this
framework. Fig. 20 shows a result produced by fusing the two
outputs of GUM [23] and global tone mapping operator in [48].
Since GUM enhances local contrast and the tone mapping operator
improves global luminance, the enhanced result is comparable
with the proposed algorithm in Section 3. This test demonstrates
that the proposed fusion strategy is a general framework for image
Fig. 17. Color distorted images. (a) Input images; (b) directly enhanced results; (c) results
the references to color in this figure caption, the reader is referred to the web version
processing. For specific problems, users can choose different ma-
ture algorithms to generate inputs and design proper weights to
highlight desired features.
5. Conclusion

We have introduced a fusion-based enhancing method to deal
with weakly illuminated images. An illumination-estimating al-
gorithm is first proposed to extract luminance and represent
naturalness. By choosing appropriate inputs and weights from the
estimated illumination, the proposed framework can effectively
deal with images under different illumination conditions, such as
back-lit images, low light images and non-uniformly illuminated
images. To reduce artifacts, a multi-scale strategy is adopted in the
fusion process. Since different features are blended, the enhanced
image achieves a good trade-off of improving luminance, enhan-
cing contrast and preserving naturalness. Experimental results
demonstrate that the proposed algorithm generates high quality
images in both qualitative and quantitative aspects. Additionally,
the proposed algorithm is computationally efficient and straight-
forward to implement and can be used as post-processing for
other applications, e.g., haze removal, to further improve image
of adding gray-world algorithmwith the proposed algorithm. (For interpretation of
of this paper.)



Fig. 18. Noise suppression. (a) Input image; (b) noisy image; (c) directly enhanced result; (d) combined with BM3D [46]; (e)–(h) enlargements of (a)–(d) in the red rectangles
respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 19. Results of post-precessing for haze removal. (a) and (e) Hazy images; (b) and (f) results from DCP [34]; (c) and (g) results from [47]; (d) and (h) results after adding
post-processing the DCP output with the proposed method.

Fig. 20. Generality of the fusion framework. Results of (a) GUM; (b) global tone mapping operator; (c) fusing (a) and (b); (d) proposed algorithm in Section 3.
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quality. The proposed fusion framework is also very general in that
it can fuse different mature enhancing methods other than those
selected in this paper.
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