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A Probabilistic Method for Image Enhancement
With Simultaneous Illumination and

Reflectance Estimation
Xueyang Fu, Yinghao Liao, Delu Zeng, Yue Huang, Xiao-Ping Zhang, Senior Member, IEEE, and Xinghao Ding

Abstract— In this paper, a new probabilistic method for image
enhancement is presented based on a simultaneous estimation of
illumination and reflectance in the linear domain. We show that
the linear domain model can better represent prior information
for better estimation of reflectance and illumination than the log-
arithmic domain. A maximum a posteriori (MAP) formulation is
employed with priors of both illumination and reflectance. To esti-
mate illumination and reflectance effectively, an alternating direc-
tion method of multipliers is adopted to solve the MAP problem.
The experimental results show the satisfactory performance of
the proposed method to obtain reflectance and illumination with
visually pleasing enhanced results and a promising convergence
rate. Compared with other testing methods, the proposed method
yields comparable or better results on both subjective and
objective assessments.

Index Terms— Image enhancement, illumination, reflectance,
optimization methods, maximum posterior probability (MAP).

I. INTRODUCTION

BASED on the simplification of light reflection, an
observed image can be modeled as the product of the

illumination and the reflectance [1]. Many methods that
decompose an image into the illumination and the reflectance
have been used in a series of applications, such as con-
trast enhancement [2]–[4], non-uniform illumination images
enhancement [5], tone mapping [6]–[10], remote sensing
image correction [11], image segmentation [12] and target
selection and tracking [13], [14], etc.
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Since computing illumination or reflectance from a single
observed image is an ill-posed problem, many algorithms
based on the Retinex theory [1], [15], [16] have been proposed
to handle this problem. This problem is described in [17] and
improved based on path computation from a random walk to
a spatially opponent operation [18], [19]. Although the illumi-
nation and reflectance are decomposed, these early approaches
usually bring along high computational complexity.
In [20], [21], the path computation is replaced by a
recursive matrix calculation to make the algorithm more
efficient. However, the large number of iterations lower
its efficiency. Horn proposed a mathematical alternative to
the Retinex algorithm in [22], where a smoothness prior
on the illumination and partial differential equation (PDE)
to obtain the reflectance image are adopted. Hurlbert later
defined a common mathematical foundation with some good
qualities [23]. However, Hurlbert’s method does not work
for arbitrary scenes [2]. Other PDE-based methods model the
ill-posed problem as a Poisson equation [24]–[27] and use fast
Fourier transforms to generate a fast implementation. Three
classical Retinex algorithms based on the center/surround
Retinex include the single-scale Retinex (SSR) [3], the
multi-scale Retinex (MSR) [28] and the multi-scale Retinex
with color restoration (MSRCR) [2]. For these three methods,
Gaussian filtering are used to estimate and remove the
illumination. Although they improve the lighting, color
consistency and scene restoration for digital images, they are
prone to halo artifacts near edges.

The first variational interpretation of Horn’s interpretation
of Retinex [22] was introduced by Kimmel et al. in [29],
which uses different regularization terms of illumination to
establish the objective function. The illumination is estimated
with this method and used for enhanced image combining
with Gamma correction. Furthermore, an L2-fidelity prior
between the reflectance and the observed image is introduced
in [30]. This method computes both the illumination and the
reflectance with Gamma correction used for further enhance-
ment. However, the computed reflectance often loses details
due to the side effect of the logarithmic transformation. This
method was complemented by a non-local extension [31]
to achieve an effective decomposition of illumination and
reflectance. Another variational model for Retinex that unifies
the previous variational models and focuses on the reflectance
is proposed by Zosso et al. [32], [33]. A kernel-based Retinex
variational model, which shares the same intrinsic character-
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istics of the original Retinex and established in the linear
domain, is introduced in [34]. An analysis of the action of this
model on contrast is provided in the literature. This method can
deal with color cast and enhance both under- and over-exposed
images. A perception based color correction of digital images
in the variational framework in the linear domain are presented
in [35] and [36]. Both color enhancement and local contrast
improvement can be achieved in this method. Meanwhile, a
numerical implementation of the gradient descent technique is
also shown in these works. The numerical approximation can
be performed in O(nlogn) operations, where n is the number
of pixels. Recently, a Retinex approach based on a variational
Bayesian method was proposed in [37]. In this literature,
different distributions are used to model the reflectance, the
illumination and other parameters, and then the variational
Bayes approximation approach is adopted to estimate both
the illumination and the reflectance. However, the computed
reflectance is also over smoothed and finer details are lost
due to the logarithmic transformation [37]. In addition, the
computational cost is high since it requires calculations of
some linear equations.

To effectively decompose illumination and reflectance from
one single observed image, most of the above methods
use the logarithmic transformation for pre-processing not
only to reduce the computational complexity [17] but also
to simulate human vision perception mechanism, such as
Weber’s law [38]. However, since the logarithmic transfor-
mation suppresses the variation of gradient magnitude in
bright regions, solving the ill-posed problem in the loga-
rithmic domain may lead to loss of finer structural details
in these areas. Meanwhile, many existing methods solve
the ill-posed problem using priors on either illumination or
reflectance. In other words, different regularization terms of
illumination and reflectance are not fully utilized to solve this
problem.

In this paper, a novel probabilistic method for image
enhancement with simultaneous illumination and reflectance
estimation in the linear domain is proposed. The core concept
is that formulating in the linear domain can better repre-
sent prior information for better estimation of reflectance
and illumination. First, a probabilistic model for simultane-
ously estimating reflectance and illumination in the linear
domain is introduced using a Maximum a Posteriori (MAP)
formulation. Then characteristics of the logarithmic trans-
formation are analyzed to show that estimating illumination
and reflectance in the linear domain yields better perfor-
mance. Finally, to decompose illumination and reflectance
efficiently, the MAP problem is transformed into an energy
minimization problem. An alternating direction method of
multipliers (ADMM) is adopted to estimate the parts of
illumination and reflectance simultaneously. The optimization
algorithm is computationally efficient and the convergence is
guaranteed [39].

This paper is organized as follows: the new probabilistic
model for estimating reflectance and illumination is introduced
in section II. Then in section III, the properties of logarith-
mic transformation are analyzed. Section IV gives details of
the optimization strategy. Experimental results are shown in

section V. Finally the work is concluded in section VI followed
by the Appendix part to explain the solution existence for the
minimization problem.

II. A PROBABILISTIC MODEL FOR SIMULTANEOUS

ILLUMINATION AND REFLECTANCE ESTIMATION

The physical model of light reflection can be simply
described as S = R·I, where the vector S is the observed image
within the range [0, 255] in an 8-bit image, R is the reflectance
within the range [0, 1], I is the illumination image within the
range [0, 255] and “·” denotes element-wise multiplication.
Since the primary goal is to estimate both illumination I
and reflectance R from one observed image S, the general
physical model can be seen as a posterior distribution by
Bayes’ theorem,

p(I, R
∣
∣S) ∝ p(S

∣
∣I, R)p(I)p(R), (1)

where p(I, R|S) is the posterior distribution, p(S |I, R ) is the
likelihood, and p(I) and p(R) represent the prior probabilities
on the illumination and the reflectance, respectively. To reduce
the computation complexity, most methods use the logarithmic
transformation to transfer multiplication into addition as a pre-
processing step [17]. In addition, the logarithmic transforma-
tion enhances details in the image by improving contrast in
dark regions, which is more sensitive to perceive by human
eyes than bright areas according to Weber’s law [38]. However,
the side effect to the logarithmic transformation is that unde-
sired structure are amplified in the low magnitude stimuli areas
and edges may become fuzzy. Therefore, this characteristic of
logarithmic transformation may lead to incorrect use of priors,
and the reason will be elaborated in the next section. So, the
proposed probabilistic model is operating in the linear domain,
described as follows.

Likelihood p(S |I, R ): The estimated error ε = S − R · I,
is assumed to be an independent and identically distrib-
uted (i.i.d.) random variable with a Gaussian distribution with
zero mean and variance ζ 2

1 . The likelihood p(S |I, R ) is

p(S
∣
∣I, R) = N(ε

∣
∣0, ζ 2

1 1). (2)

where 1 is the identity matrix.
Prior p(R): Based on the well-known assumption

that the reflectance contains edges and is piece-wise
continuous [30], [37], the distribution of gradients of
reflectance is formulated with a Laplacian distribution with
location zero and scale ζ2:

p(R) = L(∇R
∣
∣0, ζ21), (3)

where ∇ is the gradient operator in both the horizontal and
vertical directions.

Prior p(I): For illumination, two components are introduced
to design p(I). One is the distribution of gradients based on
the assumption that the illumination is spatially smooth [29],
[30], [37]. The other is designed here as a regularization term
to constrain the scale of illumination, as the illumination and
the reflectance are not in the same numerical range.

To enforce spatial smoothness in the illumination, the
Gaussian distribution, with zero mean and variance ζ 2

3 ,
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of gradients is utilized to model the first component. Therefore
the first component is written as:

p1(I) = N(∇I
∣
∣0, ζ 2

3 1). (4)

For the second part of the prior, the Gaussian distribution is
also adopted to avoid the scaling problem based on the white
patch assumption. The second component is written as:

p2(I) = N(I
∣
∣I0, ζ

2
4 1), (5)

where I0 is the mean of the Gaussian distribution and ζ 2
4 is

the variance. Since the illumination does not change sharply in
most cases, I0 is simply estimated in this paper by averaging
the observed image S.

Finally, the prior p(I) is written as:

p(I) = p1(I)p2(I). (6)

In this section, different realistic priors on both illumination
and reflectance are used to establish the probabilistic model.
In the next section, we will show that formulating in the linear
domain is more appropriate than in the logarithmic domain.

III. ANALYSIS OF THE LOGARITHMIC TRANSFORMATION

Converting S = R · I into the logarithmic domain, we have:
s = i + r, where s = log(S), i = log(I) and r = log(R).
From this equation, one variable can be estimated by simple
subtraction once the other variable is known. Kimmel was
the first one to introduce the variational interpretation for
Retinex based on the logarithmic transformation [29]. The
author establishes the variational model only with illumination.
Once the illumination i is obtained, the reflectance r can be
estimated using (s − i). Other variational methods [30], [37]
are proposed to use both illumination and reflectance in the
objective function, which makes the model more appropriate
for the estimation. Although experimental results presented
in [30] and [37] show better performance than Kimmel’s
method [29], the direct estimated reflectance, i.e., some finer
details of edges and textures, are usually smoothed out to end
up with an inaccurate estimation.

Contradicting to conventional wisdom in light of the
Weber’s law [38], the new formulation employs the linear
domain representation instead of log-transformed domain rep-
resentation that are used in all existing variational models for
decomposing reflectance and illumination including [29], [30],
and [37]. We argue that while the log-transform is a proper
transform to conform with human perception as described in
the Weber’s law, it is not a good transform to evaluate the
variational cost that represents the prior information, i.e., to
form the regularization terms in the variational model. Note
that such variational cost terms are generally represented by
a norm that evaluate a trade-off cost among different image
areas. More specifically, given a target stimulus signal x , its
gradient variation in the linear domain is ∇x , and its gradient
variation in the log-transformed domain is then ∇(log(x)) =
1
x ∇x . That is to say, when x is very small, the gradient
variation in the log-transformed domain ∇(log(x)) is highly
weighted, i.e., by 1

x , and therefore highly sensitive to the
absolute gradient variation ∇x in the linear domain. This is

Fig. 1. Example of logarithmic transformation. (a) The observed image;
(b) the logarithmic transformation of (a).

Fig. 2. (a) Gradients of Fig. 1(a), i.e., ∇x; (b) gradients of Fig. 1(b) without
normalization, i.e., ∇(log(x)) = 1

x ∇x; (c) normalized gradients of Fig. 1(b).

a good description for human perception represented by the
Weber’s law, since when the magnitude of the stimuli is low,
we are very sensitive to the difference. However, when the
highly weighted variation ∇(log(x)) = 1

x ∇x is used in a norm,
it is inevitably becoming dominant over the variation term
in the high magnitude stimuli signal areas. It is apparently
undesirable when we are trying to estimate/recover the fine
structure in the high magnitude stimuli areas. On the other
hand, the variation cost measure in the linear domain does
not have such problems. Such phenomena are illustrated in
the image example shown in Figs. 1 and 2. As can be seen
in Fig. 2(b), many undesired structure are amplified in the
low magnitude stimuli areas without normalization in the
log-transformed domain, which indicate highly weight by 1

x .
Moreover, if we normalize Fig. 2(b) to generate Fig. 2(c),
we can easily see that the intensity of fine edges and details
in high illumination areas is buried in irrelevant details in
low illumination areas and becomes too small to be used for
estimating/recovering fine structures due to intensities scaling.
Obviously, such phenomena does not happen in the linear
domain shown in Fig. 2(a).

To preserve edges and details, the existing methods
described above must use the estimated illumination to obtain
the reflectance using R = S/I, where “/” denotes element-
wise division. However, any error in estimated illumination at
one pixel, denoted as �i , will affect the estimated reflectance
at the same location. The error in R caused by �i is shown
in equation (7).

|�R| =
∣
∣
∣
∣

S

Ĩ + �I
− S

Ĩ

∣
∣
∣
∣
=

∣
∣
∣
∣

es

eĩ+�i
− es

eĩ

∣
∣
∣
∣

=
∣
∣
∣
∣

es

eĩ
(

1

e�i
− 1)

∣
∣
∣
∣
=

∣
∣
∣R̃(e−�i − 1)

∣
∣
∣, (7)

where Ĩ and R̃ denote the actual illumination and reflectance
at one pixel, �I is the error in estimated illumination in
the linear domain caused by �i and ĩ denotes the actual
illumination in the logarithmic domain. Equation (7) indicates
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that �i will exponentially affect |�R|. Once the estimated
illumination is inaccurate, so is the reflectance. Moreover,
since both reflectance and enhanced result rely on the esti-
mated illumination, conventional methods for decomposing
reflectance and illumination cannot handle noise effectively.
Relevant experiments are shown in Fig. 14.

Intuitively, a method which can estimate illumination and
reflectance simultaneously and accurately should be consid-
ered. Based on the above analysis, it is clear that solving the
problem directly in the linear domain is more appropriate than
in the logarithmic domain. In the next section, an efficient
optimization strategy is adopted to estimate illumination and
reflectance simultaneously.

IV. OPTIMIZATION ALGORITHM

To efficiently estimate illumination and reflectance simul-
taneously, the MAP problem is transformed into an energy
minimization problem, i.e., E(I, R) = − log(p(I, R |S )). The
objective function is established by taking all likelihood and
priors into consideration:

E(I, R) = ‖R · I − S‖2
2 + α ‖∇I‖2

2

+ β‖∇R‖1 + γ ‖I − I0‖2
2 s.t . S ≤ I, (8)

where α, β, and γ are three positive parameters and
‖‖p denotes the p-norm operator. Additionally, since the value
of R is between 0 and 1, the function is subject to the
constraint: S ≤ I. To minimize E(I, R), for the first term
(‖R · I − S‖2

2), which corresponds to L2 data fidelity, is to
minimize the distance between estimated (R · I) and observed
image S. The second term (‖∇I‖2

2) enforces spatial smooth-
ness on the illumination I. The third term (‖∇R‖1), which
corresponds to TV reflectance sparsity, enforces piece-wise
continuous on the reflectance R. The last term (‖I − I0‖2

2),
which is based on the L2 white patch assumption, is used to
avoid a scaling problem. All the terms in (8) correspond to
the posterior distribution in section II.

Since there are two unknowns in (8), traditional gradient
descent methods are unusable. In this paper, an alternating
direction method of multipliers (ADMM) [39] is adopted
to find a local optimal solution to the non-convex objective
function in (8). Since an L1-norm is hard to solve, an auxiliary
variable d and an error b are introduced and function (8) is
rewritten as:

E(I, R, d, b) = ‖R · I − S‖2
2 + α ‖∇I‖2

2

+ β{‖d‖1 + λ ‖∇R − d + b‖2
2 }

+ γ ‖I − I0‖2
2 s.t . S ≤ I. (9)

This objective function will have local minima, according
to ADMM theory [39]. Three separate sub-problems are
iteratively cycled through. In particular, for the j th iteration:

(P1) d j = arg min
d

‖d‖1 + λ
∥
∥
∥∇R j−1 − d + b j−1

∥
∥
∥

2

2
,

(P2) R j = arg min
R

∥
∥
∥
∥

R − S

I j−1

∥
∥
∥
∥

2

2
+βλ

∥
∥
∥∇R − d j + b j−1

∥
∥
∥

2

2
,

b j = b j−1 + ∇R j − d j ,

(P3) I j = arg min
I

∥
∥
∥
∥

I − S

R j

∥
∥
∥
∥

2

2
+ α ‖∇I‖2

2 + γ ‖I − I0‖2
2 .

Note that we transform
∥
∥R · I j−1 − S

∥
∥

2
2 into

∥
∥
∥R − S

I j−1

∥
∥
∥

2

2
in (P2) for the convenience of calculation. The similar
operation is also applied in (P3). The three sub-problems
have closed form global optimal solutions. The update for b j

follows from ADMM. The algorithm is detailed as follows:
1) Algorithm for P1: Initializing b0 = 0 and R0 = 0,

a shrinkage operation is adopted to update d j at the j th
iteration:

d j
h = shrink(∇hR j−1 + b j−1

h ,
1

2λ
),

d j
v = shrink(∇vR j−1 + b j−1

v ,
1

2λ
), (10)

where shrink(x, λ) = x
|x | ∗ max(|x | − λ, 0) with x

|x | equal

to 0 when |x | = 0. h and v are the horizontal and vertical
directions, respectively.

2) Algorithm for P2: I0 is initialized using Gaussian low-
pass filtering of the observed image, which is similar to
center/surround Retinex methods [2], [3], [28]. Since P2 is
a least squares problem, R j has a closed form solution. The
Fast Fourier Transformation (FFT) is adopted to speed up
the process, which is similar to other methods [30], [39].
By setting the first-order derivative to zero, R j is updated by
the following expression in the frequency domain:

R j = F−1(
F(S/(I j−1 + �)) + βλ�

F(1) + βλ(F∗(∇h) · F(∇h) + F∗(∇v ) · F(∇v ))
),

(11)

where � = F∗(∇h) · F(d j
h − b j−1

h ) + F∗(∇v ) · F(d j
v − b j−1

v ),
� is a small positive value used to avoid the denominator
being 0, F is the FFT operator, F∗ is the conjugate transpose
and F−1 is the inverse FFT operator. The derivative operator is
diagonalized after FFT so that matrix inversion can be avoided.
All calculations are performed element-wise.

Updating b j by the following expression at the j th iteration:

b j
h = b j−1

h + ∇hR j − d j
h,

b j
v = b j−1

v + ∇vR j − d j
v . (12)

This operation is the similar to “adding back the noise”
used in TV denoising [40]. d, R and b are updated until
εR = (

∥
∥R j − R j−1

∥
∥ /

∥
∥R j−1

∥
∥) ≤ ε1.

3) Algorithm for P3: Updating I j is similar to R j since P3
is also a least squares problem:

I j = F−1(
F(γ I0 + S/(R j + �))

F(1)+ γ +α(F∗(∇h) · F(∇h)+F∗(∇v ) · F(∇v ))
).

(13)

According to the prior: S ≤ I, a simple correction is
made after I is updated: I j = max(I j , S). I is updated until
εI = (

∥
∥I j − I j−1

∥
∥ /

∥
∥I j−1

∥
∥) ≤ ε2.

Since large-matrix inversion is avoided by FFT and the
shrinkage operation is fast due to requiring only a few opera-
tions, I and R can be solved simultaneously and efficiently.

In the end, the proposed algorithm is summarized
in Algorithm 1. What is more, the existence of a solution to
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Algorithm 1 Outline of Algorithm

the minimization problem (8) is proved in Appendix A. In the
next section, experimental results are presented to demonstrate
the efficiency and effectiveness of the proposed method.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to
illustrate the efficiency and effectiveness of the pro-
posed method. The simulation is Matlab R2012a on a
PC with a 2.60GHz Intel Pentium Dual Core Processor.
The Matlab code can be found on our website: http://smartdsp.
xmu.edu.cn/Appendix.html.

Since the reflectance is sometimes over-
enhanced [29], [30], [37], a Gamma correction operation
is adopted for post-processing, similar to previous
studies [29], [30], [37]. The Gamma correction of the
illumination I with an adjustment parameter γ ′ is defined as
follows:

I′ = W

(
I

W

) 1
γ ′
, (14)

where W is 255 and the empirical parameter γ ′ is set as 2.2.
The final enhanced image is:

Senhanced = R · I′. (15)

In our experiments, the empirical parameters α, β, γ and λ
are set at 1000, 0.01, 0.1 and 10, respectively. The analysis
of parameter selection is shown in the experiments presented
later. For the stopping parameters, ε1 and ε2 are set to
be 0.1. Two approaches [30] can be used with the proposed
method for color images. The first one is to process each
RGB (red, green, and blue) channel separately. The second
is to transform color images into the HSV (hue, saturation
and value) space and only process the V layer, and then
transform it back to the RGB-color space. When an image
contains both severe color distortion and dark appearance,
the visual effect of results that processed in the RGB-color
space will be better than that in the HSV-color space. For
simplification, the HSV algorithm is adopted to process images
unless specifically indicated in the following experiments.
Results of the proposed method are compared with other
relevant algorithms for different images.

Fig. 3 shows the experimental results obtained using the pro-
posed method in both RGB-color space and HSV-color space.

It can be seen that the illuminations in Figs. 3(b) and 3(e)
exhibit spatial smoothing. Fig. 3(b) includes color informa-
tion since the algorithm is applied to each RGB channel
separately. Moreover, processing in the RGB-color space can
make color correction as shown in the following experiments,
i.e., Figs. 7 and 8. The reflectance in Figs. 3(c) and 3(f)
effectively preserve the edges while Fig. 3(c) contains color
information. Figs. 3(d) and 3(g) show the final enhanced
images with Gamma correction. This operation can lighten
the observed image and avoid over-enhancement and provides
a good visual quality to the images.

Now we compare the proposed method with other relevant
state-of-the-art methods. Four Retinex methods, including the
MSRCR method [2], Kimmel’s method [29], Ng’s method [30]
and Bayesian method [37], and two non-Retinex methods,
including the classical histogram equalization (HE) [41]
and the automatic color enhancement (ACE) [42] are used
for comparison. The scale parameters are 15, 80 and 250
in the MSRCR. In Kimmel’s method and Ng’s method,
the parameters are set the same as in [29] and [30],
i.e., α = 1, β = 0.1, μ = 10−5, λ = 1. In the Bayesian
method [37], the maximum number of iterations is set at 50
and the stopping criterion parameter is set as 10−4. The slope
parameter is set to 5 in the ACE method [42].

Due to space limitations, three images selected for illus-
tration, since they include different conditions such as long
shot, close shot, non-uniform illumination and night-time.
It can be seen that the HE method, shown in Figs. 4(b)-6(b)
produces over-enhancement and color distortion, i.e., the long
shot in Fig. 4(b), the sky in Fig. 5(b) and the lighting
region in Fig. 6(b). The ACE method, in Figs. 4(c)-6(c),
also has an unsatisfactory effect on color and is very sen-
sitive to the spatial weighting. The MSRCR has some over-
enhancement effects as can be observed by effects such as
the whitening of the blue sky in Fig. 4(d) and the lighting
region on the desk in Fig. 6(d). The subjective visual effect of
the proposed method is similar to the other three variational
methods [29], [30], [37]. However, the proposed method
produces a better contrast than these three methods, as shown
in the following objective assessment. The enhancements
produced by the proposed method have better color range,
lightened dark regions, naturalness preservation, and effec-
tively enhanced details.

Three objective metrics are further presented to evaluate
the enhanced results in Figs. 4-6. The averages of evaluation
scores are also calculated for overall comparison. The first
metric is the contrast gain based on the contrast differ-
ence between the observed image and the enhanced result.
A higher value means a better contrast. The formula for the
gain is:

G = Cenhanced

Cobserved
, (16)

where C is the average value of 3×3 local contrast obtained
by Michelson contrast [43]. Table 1 shows quantitative mea-
surement results of the contrast gain. As shown in Table 1,
HE and MSRCR have a higher average contrast gain than
the proposed method, since both methods stretch the dynamic
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Fig. 3. Proposed method in both RGB-color space and HSV-color space. (a) The observed image; (b) the illumination image in RGB-color space; (c) the
reflectance image in RGB-color space; (d) the enhanced image using Gamma correction with (b) and (c); (e) the illumination image in HSV-color space;
(f) the reflectance image in HSV-color space; (g) the enhanced image using Gamma correction with (e) and (f).

Fig. 4. Girl image. (a) the observed image; (b) The result by HE [41]; (c) the result by ACE [42]; (d) the result by MSRCR [2]; (e) the result by Kimmel’s
method [29]; (f) the result by Ng’s method [30]; (g) the result by Bayesian method [37]; (h) the result by the proposed method.

Fig. 5. Landscape image. (a) The observed image; (b) the result by HE [41]; (c) the result by ACE [42]; (d) the result by MSRCR [2]; (e) the result by
Kimmel’s method [29]; (f) the result by Ng’s method [30]; (g) the result by Bayesian method [37]; (h) the result by the proposed method.

range to increase the contrast. However, the subjective visual
effect of the proposed method is obviously better than MSRCR
and HE.

The second metric is the lightness-order-error (LOE)
measure [5], shown in Table 2 to evaluate naturalness preserva-
tion. This evaluation is based on the following constraint: the
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Fig. 6. Desk image. (a) The observed image; (b) the result by HE [41]; (c) the result by ACE [42]; (d) the result by MSRCR [2]; (e) the result by Kimmel’s
method [29]; (f) the result by Ng’s method [30]; (g) the result by Bayesian method [37]; (h) the result by the proposed method.

TABLE I

QUANTITATIVE MEASUREMENT RESULTS OF CONTRAST GAIN

TABLE II

QUANTITATIVE MEASUREMENT RESULTS OF LOE

TABLE III

QUANTITATIVE MEASUREMENT RESULTS OF NIQE

relative lightness order is related to the naturalness and should
not be changed rapidly in the enhanced image [5]. A smaller
LOE value means a smaller change in the relative lightness
order, representing better naturalness preservation. As shown
in Table 2, the proposed method outperforms ACE, MSRCR,
Kimmel’s method and Bayesian method in preserving the
naturalness. Although HE and Ng’s method have a slight lower
LOE value, the proposed method shows a better local contrast
than Ng’s method, and a better overall visual effect than HE.

The third metric is the natural image quality evalua-
tor (NIQE) blind image quality assessment [44], which is

based on statistical regularities from natural and undistorted
images. A lower NIQE value represents a higher image quality.
As shown in Table 3, the proposed method has a lower average
than other algorithms except ACE. However, ACE has the
highest average of LOE measure in Table 2 which indicates
the worst performance on naturalness preservation. In contrast,
the proposed method has a stable objective performance
over the three metrics.

In next two experiments, color correction and reflectance
estimation are tested to demonstrate the advantages of formu-
lating in the linear domain instead of the logarithmic domain.
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Fig. 7. Comparison of color correction. (a) The observed image; (b) the ground truth; (c) the result by Kimmel’s method [29]; (d) the enhanced image by
Ng’s method [30]; (e) the result by the proposed method.

Fig. 8. Comparison of color correction. (a) The observed image; (b) the ground truth; (c) the result by Kimmel’s method [29]; (d) the enhanced image by
Ng’s method [30]; (e) the result by the proposed method.

Fig. 9. (a)-(c) The histogram distribution of S-CIELAB errors of Fig. 7(b) (ground truth) with Fig. 7(c) (Kimmel’s method [29]), Fig. 7(d) (Ng’s method [30]),
Fig. 7(e) (the proposed method), respectively; (d)-(e) the spatial location of the errors, that are 15 units or higher marked by green,
between Fig. 7(b) and Fig. 7(c), Fig. 7(d), Fig. 7(e), respectively.

In Figs. 7 and 8, we focus on the color correction perfor-
mance to demonstrate the accuracy of the estimated illumi-
nation. Since the illumination is computed in the RGB-color
space and removed, the reflectance retains the original color
information of the object, meaning that the proposed algo-
rithm has the effect of color correction. The original images
are processed in the RGB-color space and the results are
compared with two other Retinex algorithms [29], [30].
Original images and actual illuminants are downloaded from

http://colorconstancy.com/?page_id=21. Compared with the
other two algorithms, Figs. 7(e) and 8(e) show an obvi-
ous color correction effect using the proposed method. For
instance, see the color of orange bottle in Fig. 7 and the
color of wall and books in Fig. 8. The S-CIELAB color met-
ric [45] based on spatial processing to measure color errors,
is then adopted to verify the accuracy of color correction. The
S-CIELAB errors between the ground truth and different
algorithms are shown in Figs. 9 and 10. As can be seen, the
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Fig. 10. (a)-(c) The histogram distribution of S-CIELAB errors of Fig. 8(b) (ground truth) with Fig. 8(c) (Kimmel’s method [29]), Fig. 8(d) (Ng’s method [30])
and Fig. 8(e) (the proposed method), respectively; (d)-(e) the spatial location of the errors, that are 15 units or higher marked by green, between Fig. 8(b)
and Fig. 8(c), Fig. 8(d), Fig. 8(e), respectively.

Fig. 11. Comparison of reflectance estimation. (a) The observed image; (b) Gamma correction with the reflectance directly derived from Ng’s method [30];
(c) Gamma correction with the reflectance directly derived from Bayesian method [37]; (d) Gamma correction with the reflectance directly derived from the
proposed method.

Fig. 12. Comparison of reflectance estimation. (a) The observed image; (b) Gamma correction with the reflectance directly derived from Ng’s method [30];
(c) Gamma correction with the reflectance directly derived from Bayesian method [37]; (d) Gamma correction with the reflectance directly derived from the
proposed method.

numbers of pixels per error unit are given by the histogram
distribution of S-CIELAB. From the histogram distribution,
we can conclude that the difference between the ground truth
and the processed image using the new method is smaller than
all other algorithms. This can be seen by the spatial locations
of the errors, marked in green in Figs. 9 and 10.

Subsequently, the quality of reflectance estimation is
validated. The results are compared with other two varia-
tional Retinex methods [30], [37], both estimating reflectance.
Figs. 11 and 12 show the results of Gamma correction with
the reflectance directly derived from different algorithms.
It can be seen that the reflectance directly derived from
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Fig. 13. The effects of regularization parameters. (a) The observed image. (b) α = 1000, β = 0.01, γ = 0.1. (c) α = 10, β = 0.01, γ = 0.1. (d) α = 100,
β = 0.01, γ = 0.1. (e) α = 1000, β = 0.1, γ = 0.1. (f) α = 1000, β = 1, γ = 0.1. (g) α = 1000, β = 0.01, γ = 1. (h) α = 1000, β = 0.01, γ = 10.

Fig. 14. Comparison of noise suppression. (a) The noisy image of Fig. 13(a); (b) Gamma correction of Kimmel’s method [29]; (c) Gamma correction of
Ng’s method [30]; (d) Gamma correction of the proposed method; (e)-(h): enlargements of (a)-(d) in the red rectangle.

algorithm [30], [37] are over-enhanced and over-smoothed,
while the proposed new method performs better on edges and
naturalness preservation, such as the girl’s eyes in Fig. 11 and
the leaves on the trees in Fig. 12. This experiment demon-
strates that estimating reflectance in the linear domain is more
appropriate than the logarithmic domain, since the logarith-
mic transformation smoothes edges and amplifies undesired
structure in low illumination areas, as discussed in section III.
On the contrary, the proposed method can estimate the
reflectance more accurately than the other two algorithms.
This is because formulating in the linear domain can better
represent prior information for better estimation of reflectance.

Next, the effects of regularization parameters α, β and γ in
model (8) are tested. The empirical parameters are set as 1000,
0.01 and 0.1 as shown in Fig. 13(b). First, β and γ are fixed at
0.01 and 0.1, respectively, and α varies between 10 and 100.
In Fig. 13(c)-(d), the illuminations of the enhanced results are

weakened slightly as α increases. This is because α controls
the smoothness of the illumination. Then α and γ are fixed at
1000 and 0.1, respectively, and β is varied between 0.1 and 1.
Fig. 13(e)-(f) shows edges are fuzzed since L1 term decreases
as β increases. However, the effect of β can be used to handle
noise, shown in the next experiment. Finally, α and β are
fixed at 1000 and 0.01, respectively, and γ is varied between
1 and 10. Fig. 13(g)-(h) show the enhanced results that are
almost unchanged. In most cases, the empirical setting of
regularization parameters generates satisfactory results.

In this experiment, the effectiveness of noise suppression
is tested by comparing with Kimmel’s method [29] and
Ng’s method [30]. The parameter β of the proposed method is
set as 0.05 for a better visualization. The image in Fig. 13(a) is
contaminated with slight additive white Gaussian noise n with
σ = 5. Due to the reflectance estimated by methods [29], [30]
is inaccurate, the Gamma correction only relies on the
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Fig. 15. The relation between the error εR, εI and the number of iterations.
(a) image with size 300 × 197; (b) image with size 1200 × 787.

estimated illumination, i.e.,

Senhanced = S
I

· I′ = (R · I + n) · I′

I
. (17)

However, since I ≤ I′ according to equation (14), noise
will be amplified after Gamma correction, especially in dark
regions. As can be seen in Figs. 14(f) and 14(g), both
Kimmel’s method [29] and Ng’s method [30] amplify the
noise after Gamma correction. While the proposed method
can suppress noise without losing enhancing effect, as shown
in Fig. 14(h). Since the proposed method solving the problem
in the linear domain and estimates reflectance and illumination
simultaneously, the L1 regularization term in equation (8) can
effective handle noise.

The convergence of the proposed optimization algorithm
is analyzed in this set of experiments. Two different images
with different sizes 300 × 197 and 1200 × 787 are tested.
Fig. 15 shows the relationship between the error εR, εI and the
number of iterations. As can be seen, the convergence rate is
fast and independent of the image size. Both errors εR and εI

in the images are less than 0.01 after nearly 12 iterations.
This phenomenon is due to the optimization algorithm which
effectively splits the energy minimization problem into two
convex sub-problems which optimizes R and I . Fig. 15
demonstrates the convergence of the proposed algorithm.

The last experiment tests the computational time of the
proposed method. Since all calculations of the proposed
algorithm are element-wise and the FFT is adopted to avoid
large-matrix inversion, the computational time is satisfactory.
It takes about 1.8 seconds with size of 500 × 328. Note that
some methods, such as Bayesian method [37], have higher
computational complexity due to the need to solve very large
linear equations. The computational time of the proposed
method can be further improved by C programming and
advanced computing devices, such as a Graphics Processing
Unit (GPU).

VI. CONCLUSION

In this paper, a new probabilistic method for image enhance-
ment that estimates illumination and reflectance simulta-
neously is proposed in the linear domain. We show that
formulating in the linear domain is more appropriate than
in the logarithmic domain as described in section III.
Firstly, based on the intrinsic properties of illumination and
reflectance, an MAP based probabilistic model for estimating

illumination and reflectance is formulated in the linear domain
instead of the commonly used logarithmic domain. To separate
the illumination and the reflectance efficiently, the MAP prob-
lem is transformed into an energy minimization problem to
fully use various image priors. An iterative optimization algo-
rithm is introduced to solve the energy minimization problem
and estimate the illumination and reflectance simultaneously
and effectively. Experimental results present a comprehensive
analysis of the proposed method using both subjective and
objective assessments. Compared with several state-of-the-art
algorithms, the proposed method shows similar or even better
results with satisfactory computational cost.

APPENDIX

THE EXISTENCE FOR SOLUTION OF

THE MINIMIZATION PROBLEM

Thanks to the literature [30], we are to prove the existence
for the solution of the given minimization problem here.

First, a tiny value � is added with the observed image S
to prevent it from approaching 0 when S is the denominator.
So actually we have S = S+� and this will not affect the final
result.

Supposed that S is defined on 
. Then the feasible solution
space can be

� =
{

(R, I)
∣
∣(R, I) ∈ BV (
) × W 1,2(
), S ≤ I

}

.

And, the energy minimization problem is

min
(R,I)∈�

E(R, I) = min
(R,I)∈�

‖R · I − S‖2
2 + α ‖∇I‖2

2

+ β‖∇R‖1 + γ ‖I − I0‖2
2 s.t . S ≤ I.

(A-1)

Theorem: Let S ∈ L∞(
), the problem (A-1) has at least
one solution.

Proof: If I and R are two constants, the energy E(R, I)
will be finite. Assume (Rt , It ) is a minimizing sequence
of problem (A-1), then there exists a constant M > 0
such that

E(Rt , It ) ≤ M.

So this inequality can be written as:

‖Rt · It − S‖2
2 + α ‖∇It‖2

2 + β‖∇Rt‖1 + γ ‖It − I0‖2
2 ≤ M.

The boundedness of either ‖∇It‖2
2 or ‖It − I0‖2

2 guarantees
that {It } is uniformly bounded in W 1,2(
). Note that W 1,2(
)
is embedded in L2(
), so up to a subsequence, {It } converges
to a I∗ ∈ W 1,2(
), i.e.,

It −−−→
L2(
)

I∗ and It ⇀ I∗ ∈ W 1,2(
). (A-2)

Meanwhile, the sequence {Rt } satisfies

β‖∇Rt‖1 ≤ M,

and

‖Rt · It − S‖2
2 ≤ M.
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Note that It ≥ S and S is the observed image which can be
seen as constant matrix on every pixel, we have

‖Rt‖2 =
∥
∥
∥
∥

Rt − S
It

+ S
It

∥
∥
∥
∥

2

=
∥
∥
∥
∥

1
It

· (Rt · It − S + S)

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

1
S

· (Rt · It − S + S)

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

1
S

∥
∥
∥
∥

2
{‖(Rt · It − S)‖2 + ‖S‖2},

where 1
It

and 1
S is defined as the reciprocal of each element

in It and S, S
It

is performed element-wise.
Because S ∈ L∞(
) and S is actually not equal to 0 as

described before, both
∥
∥
∥

1
S

∥
∥
∥

2
and ‖S‖2 are finite. Meanwhile

‖Rt · It − S‖2
2 ≤ M , we can deduce that {Rt } is uniformly

bounded in L2(
), as well as in L1(
). Combining with
β‖∇Rt‖1 ≤ M, we have {Rt } is uniformly bounded in BV (
).
Therefore, there exists an R∗ ∈ BV (
) such that, up to a
subsequence,

Rt −−−→
L1(
)

R∗ and Rt ⇀ R∗ ∈ L2(
). (A-3)

Note that (A-2) holds for It , which corresponds to Rt ;
therefore, we conclude that, up to a subsequence, {(Rt , It )}
satisfies both (A-2) and (A-3). As a consequence of the lower
semicontinuity for the W 1,2(
) norm, that is,

lim inf
t→∞

(

α ‖∇It‖2
2 + γ ‖It − I0‖2

2

)

≥ α ‖∇I∗‖2
2 + γ ‖I∗− I0‖2

2 .

Since Rt · It → R∗ · I∗ in L2(
) and recalling the lower
semicontinuity for the L2(
) norm, we have

lim inf
t→∞ ‖Rt · It − S‖2

2 ≥ ‖R∗ · I∗ − S‖2
2 .

Noting the lower semicontinuity of BV (
) norm that

lim inf
t→∞ β‖∇Rt‖1 ≥ β‖∇R∗‖1,

we have

min
(R,I)∈�

E(R, I) = lim inf
t→∞ E(Rt , It ) ≥ E(R∗, I∗),

and I∗ ≥ S. The proof is completed.
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