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Bayesian Nonparametric Dictionary Learning for
Compressed Sensing MRI
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Abstract— We develop a Bayesian nonparametric model for
reconstructing magnetic resonance images (MRIs) from highly
undersampled k-space data. We perform dictionary learning as
part of the image reconstruction process. To this end, we use
the beta process as a nonparametric dictionary learning prior
for representing an image patch as a sparse combination of
dictionary elements. The size of the dictionary and patch-specific
sparsity pattern are inferred from the data, in addition to other
dictionary learning variables. Dictionary learning is performed
directly on the compressed image, and so is tailored to the MRI
being considered. In addition, we investigate a total variation
penalty term in combination with the dictionary learning model,
and show how the denoising property of dictionary learning
removes dependence on regularization parameters in the noisy
setting. We derive a stochastic optimization algorithm based on
Markov chain Monte Carlo for the Bayesian model, and use
the alternating direction method of multipliers for efficiently
performing total variation minimization. We present empirical
results on several MRI, which show that the proposed regu-
larization framework can improve reconstruction accuracy over
other methods.

Index Terms— Compressed sensing, magnetic resonance
imaging, Bayesian nonparametrics, dictionary learning.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a widely used
technique for visualizing the structure and functioning

of the body. A limitation of MRI is its slow scan speed dur-
ing data acquisition. Therefore, methods for accelerating the
MRI process have been heavily researched. Recent advances
in signal reconstruction from measurements sampled below
the Nyquist rate, called compressed sensing (CS) [1], [2],
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have had a major impact on MRI [3]. CS-MRI allows for
significant undersampling in the Fourier measurement domain
of MR images (called k-space), while still outputting a
high-quality image reconstruction. While image reconstruc-
tion using this undersampled data is a case of an ill-posed
inverse problem, compressed sensing theory has shown that
it is possible to reconstruct a signal from significantly fewer
measurements than mandated by traditional Nyquist sampling
if the signal is sparse in a particular transform domain.

Motivated by the need to find a sparse domain for rep-
resenting the MR signal, a large body of literature now
exists on reconstructing MRI from significantly undersam-
pled k-space data. Existing improvements in CS-MRI mostly
focus on (i ) seeking sparse domains for the image, such
as contourlets [4], [5]; (i i ) using approximations of the
�0 norm for better reconstruction performance with fewer
measurements, for example �1, FOCUSS, �p quasi-norms with
0 < p < 1, or using smooth functions to approximate the
�0 norm [6], [7]; and (i i i ) accelerating image reconstruction
through more efficient optimization techniques [8], [10], [29].
In this paper we present a modeling framework that is similarly
motivated.

CS-MRI reconstruction algorithms tend to fall into
two categories: Those which enforce sparsity directly
within some image transform domain [3]– [8], [10]–[12],
and those which enforce sparsity in some underlying
latent representation of the image, such as an adap-
tive dictionary-based representation [9], [14]. Most CS-MRI
reconstruction algorithms belong to the first category. For
example Sparse MRI [3], the leading study in CS-MRI,
performs MR image reconstruction by enforcing sparsity in
both the wavelet domain and the total variation (TV) of
the reconstructed image. Algorithms with image-level sparsity
constraints such as Sparse MRI typically employ an off-
the-shelf basis, which can usually capture only one feature
of the image. For example, wavelets recover point-like fea-
tures, while contourlets recover curve-like features. Since MR
images contain a variety of underlying features, such as edges
and textures, using a basis not adapted to the image can be
considered a drawback of these algorithms.

Finding a sparse basis that is suited to the image at hand
can benefit MR image reconstruction, since CS theory shows
that the required number of measurements is linked to the
sparsity of the signal in the selected transform domain. Using
a standard basis not adapted to the image under consideration
will likely not provide a representation that can compete in
sparsity with an adapted basis. To this end, dictionary learning,
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which falls in the second group of algorithms, learns a sparse
basis on image subregions called patches that is adapted
to the image class of interest. Recent studies in the image
processing literature have shown that dictionary learning is an
effective means for finding a sparse, patch-level representation
of an image [19], [20], [25]. These algorithms learn a patch-
level dictionary by exploiting structural similarities between
patches extracted from images within a class of interest.
Among these approaches, adaptive dictionary learning—where
the dictionary is learned directly from the image being
considered—based on patch-level sparsity constraints usually
outperforms analytical dictionary approaches in denoising,
super-resolution reconstruction, interpolation, inpainting, clas-
sification and other applications, since the adaptively learned
dictionary suits the signal of interest [19]–[22].

Dictionary learning has previously been applied to CS-MRI
to learn a sparse basis for reconstruction, see [14]. With these
methods, parameters such as the dictionary size and patch
sparsity are preset, and algorithms are considered that are
non-Bayesian. In this paper, we consider a new dictionary
learning algorithm for CS-MRI that is motivated by Bayesian
nonparametric statistics. Specifically, we consider a nonpara-
metric dictionary learning model called BPFA [23] that uses
the beta process to learn the sparse representation necessary for
CS-MRI reconstruction. The beta process is an effective prior
for nonparametric learning of latent factor models; in this case
the latent factors correspond to dictionary elements. While
the dictionary size is therefore infinite in principle, through
posterior inference the beta process learns a suitably compact
dictionary in which the signal can be sparsely represented.

We organize the paper as follows. In Section II we review
CS-MRI inversion methods and the beta process for dictionary
learning. In Section III, we describe the proposed regulariza-
tion framework and algorithm. We derive a Markov Chain
Monte Carlo (MCMC) sampling algorithm for stochastic opti-
mization of the dictionary variables in the objective function.
In addition, we consider including a sparse total variation (TV)
penalty, for which we perform efficient optimization using the
alternating direction method of multipliers (ADMM). We then
show the advantages of the proposed Bayesian nonparametric
regularization framework on several CS-MRI problems in
Section IV.

II. BACKGROUND AND RELATED WORK

We use the following notation: Let x ∈ CN be a
√

N ×√
N

MR image in vectorized form. Let Fu ∈ Cu×N , u � N , be
the undersampled Fourier encoding matrix and y = Fux ∈ Cu

represent the sub-sampled set of k-space measurements. The
goal is to estimate x from the small fraction of k-space
measurements y. For dictionary learning, let Ri be the i th patch
extraction matrix. That is, Ri is a P × N matrix of all
zeros except for a one in each row that extracts a vectorized√

P ×√
P patch from the image, Ri x ∈ CP for i = 1, . . . , N .

We use overlapping image patches with a shift of one pixel and
allow a patch to wrap around the image at the boundaries for
mathematical convenience [15], [22]. All norms are extended
to complex vectors when necessary, ‖a‖p = (∑

i |ai |p
)1/p,

where |ai | is the modulus of the complex number ai .

A. Two Approaches to CS-MRI Inversion

We focus on single-channel CS-MRI inversion via optimiz-
ing an unconstrained function of the form

arg min
x

h(x)+ λ

2
‖Fux − y‖2

2, (1)

where ‖Fux −y‖2
2 is a data fidelity term, λ > 0 is a parameter

and h(x) is a regularization function that controls properties
of the image we want to reconstruct. As discussed in the
introduction, the function h can take several forms, but tends
to fall into one of two categories according to whether image-
level or patch-level information is considered. We next review
these two approaches.

1) Image-Level Sparse Regularization: CS-MRI with an
image-level, or global regularization function hg(x) is one in
which sparsity is enforced within a transform domain defined
on the entire image. For example, in Sparse MRI [3] the
regularization function is

hg(x) = ‖Wx‖1 + μ T V (x), (2)

where W is the wavelet basis and T V (x) is the total variation
(spatial finite differences) of the image. Regularizing with
this function requires that the image be sparse in the wavelet
domain, as measured by the �1 norm of the wavelet coefficients
‖Wx‖1, which acts as a surrogate for �0 [1], [2]. The total
variation term enforces homogeneity within the image by
encouraging neighboring pixels to have similar values while
allowing for sudden high frequency jumps at edges. The
parameter μ > 0 controls the trade-off between the two terms.
A variety of other image-level regularization approaches have
been proposed along these lines, see [4], [5], [7].

2) Patch-Level Sparse Regularization: An alternative to the
image-level sparsity constraint hg(x) is a patch-level, or local
regularization function hl(x), which enforces that patches
(square sub-regions of the image) have a sparse representation
according to a dictionary. One possible general form of such
a regularization function is,

hl(x) =
N∑

i=1

γ

2
‖Ri x − Dαi‖2

2 + f (αi , D), (3)

where the dictionary matrix is D ∈ CP×K and αi is a
K -dimensional vector in RK . An important difference between
hl(x) and hg(x) is the additional function f (αi , D). While
image-level sparsity constraints fall within a predefined trans-
form domain, such as the wavelet basis, the sparse dictio-
nary domain can be unknown for patch-level regularization
and learned from data. The function f enforces sparsity by
learning a D for which αi is sparse.1 For example, [9] uses
K-SVD to learn D off-line, and then approximately optimize
the objective function

arg min
α1:N

N∑

i=1

‖Ri x − Dαi ‖2
2 subject to ‖αi‖0 ≤ T, ∀i, (4)

using orthogonal matching pursuits (OMP) [21]. In this case,
the L0 penalty on the additional parameters αi make this a

1The dependence of hl(x) on α and D is implied in our notation.
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Algorithm 1 Dictionary Learning With BPFA

non-convex problem. Using this definition of hl(x) in (1),
a local optimal solution can be found by an alternating
minimization procedure [32]: First solve the least squares
solution for x using the current values of αi and D, and then
update αi and D, or only αi if D is learned off-line.

B. Dictionary Learning With Beta Process Factor Analysis

Typical dictionary learning approaches require a predefined
dictionary size and, for each patch, the setting of either a
sparsity level T , or an error threshold ε to determine how many
dictionary elements are used. In both cases, if the settings
do not agree with ground truth, the performance can signifi-
cantly degrade. Instead, we consider a Bayesian nonparametric
method called beta process factor analysis (BPFA) [23], which
has been shown to successfully infer both of these values,
as well as have competitive performance with algorithms in
several application areas [23]– [26], and see [33]– [36] for
related algorithms. The beta process is driven by an under-
lying Poisson process, and so it’s properties as a Bayesian
nonparametric prior are well understood [27]. Originally used
for survival analysis in the statistics literature, its use for latent
factor modeling has been significantly increasing within the
machine learning community [23]–[26], [28], [33]–[36].

1) Generative Model: We give the original hierarchical
prior structure of the BPFA model in Algorithm 1, extending
this to complex-valued dictionaries in Section III-A. With this
approach, the model constructs a dictionary matrix D ∈ R

P×K

(CP×K below) of i.i.d. random variables, and assigns proba-
bility πk to vector dk . The parameters for these probabilities
are set such that most of the πk are expected to be small,
with a few large. In Algorithm 1 we use an approximation to
the beta process.2 Under this parameterization, each patch Ri x
extracted from the image x is modeled as a sparse weighted
combination of the dictionary elements, as determined by
the element-wise product of zi ∈ {0, 1}K with the Gaussian
vector si . What makes the model nonparametric is that for

2For a finite c > 0 and γ > 0, the random measure H = ∑K
k=1 πkδdk

converges weakly to a beta process as K → ∞ [24], [27].

many values of k, the values of zik will equal zero for all
i since πk will be very small; the model learns the number
of these unused dictionary elements and their index values
from the data. Therefore, the value of K should be set to
a large number that is more than the expected size of the
dictionary. It can be shown that, under the assumptions of this
prior, in the limit K → ∞, the number of dictionary elements
used by a patch is Poisson(γ ) distributed and the total number
of dictionary elements used by the data grows like cγ ln N ,
where N is the number of patches [28]. The parameters of the
model include c, γ , e0, f0, g0, h0 and K ; we discuss setting
these values in Section IV.

2) Relationship to K-SVD: Another widely used dictionary
learning method is K-SVD [20]. Though they are models for
the same problem, BPFA and K-SVD have some significant
differences that we briefly discuss. K-SVD learns the sparsity
pattern of the coding vector αi using the OMP algorithm [21]
for each i . Holding the sparsity pattern fixed, it then updates
each dictionary element and dimension of α jointly by a rank
one approximation to the residual. Unlike BPFA, it learns as
many dictionary elements as are given to it, so K should
be set wisely. BPFA on the other hand automatically prunes
unneeded elements, and updates the sparsity pattern by using
the posterior distribution of a Bernoulli process, which is
significantly different from OMP. It updates the weights and
the dictionary from their Gaussian posteriors as well. Because
of this probabilistic structure, we derive a sampling algorithm
for these variables that takes advantage of marginalization, and
naturally learns the auxiliary variables γε and γs .

3) Example Denoising Problem: As we will see, the rela-
tionship of dictionary learning to CS-MRI is essentially as a
denoising step. To this end, we briefly illustrate BPFA on a
denoising problem. Denoising of an image using dictionary
learning proceeds by first learning the dictionary representa-
tion of each patch, Ri x ≈ Dαi . The denoised reconstruction
of x using BPFA is then xBPFA = 1

P

∑
i RT

i Dαi .
We show an example using 6 × 6 patches extracted from

the noisy 512 × 512 image shown in Fig. 1(a). In Fig. 1(b)
we show the resulting denoised image. For this problem we
truncated the dictionary size to K = 108 and set all other
model parameters to one. In Figs. 1(c) and 1(d) we show
some statistics from dictionary learning. For example, Fig. 1(c)
shows the values of πk sorted, where we see that fewer than
100 elements are used by the data, many of which are very
sparsely used. Fig. 1(d) shows the empirical distribution of the
number of elements used per patch. We see the ability of the
model to adapt the sparsity to the complexity of the patch. In
Table I we show PSNR results for three noise variance levels.
For K-SVD, we consider the case when the error parameter
matches the ground truth, and when it mismatches it by a
magnitude of five. As expected, when K-SVD does not have an
appropriate parameter setting the performance suffers. BPFA
on the other hand adaptively infers this value, which helps
improve the denoising.

III. CS-MRI WITH BPFA AND TV PENALTY

We next present our approach for reconstructing single-
channel MR images from highly undersampled k-space data.
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Fig. 1. (a)-(b) An example of denoising by BPFA (image scaled to [0,1]).
(c) Shows the final probabilities of the dictionary elements and (d) shows a
distribution on the number of dictionary elements used per patch.

TABLE I

PEAK SIGNAL-TO-NOISE RATIO (PSNR) FOR IMAGE DENOISED BY

BPFA. COMPARED WITH K-SVD USING CORRECT (MATCH) AND

INCORRECT (MISMATCH) NOISE PARAMETER

In reference to the discussion in Section II, we consider a
sparsity constraint of the form

arg min
x,ϕ

λghg(x)+ hl(x)+ λ

2
‖Fux − y‖2

2,

hg(x) : = T V (x), hl(x) :=
N∑

i=1

γε

2
‖Ri x−Dαi‖2

2 + f (ϕi ). (5)

For the local regularization function hl(x) we use BPFA
as given in Algorithm 1 in Section II-B. The parameters
to be optimized for this penalty are contained in the set
ϕi = {D, si , zi , γε, γs, π}, and are defined in Algorithm 1.
We note that only si and zi vary in i , while the rest are
shared by all patches. The regularization term γε is a model
variable that corresponds to an inverse variance parameter
of the multivariate Gaussian likelihood. This likelihood is
equivalently viewed as the squared error penalty term in hl(x)
in (5). This term acts as the sparse basis for the image and
also aids in producing a denoised reconstruction, as discussed
in Sections II-B, III-B and IV-B. For the global regularization
function hg(x) we use the total variation of the image. This
term encourages homogeneity within contiguous regions of
the image, while still allowing for sharp jumps in pixel value
at edges due to the underlying �1 penalty. The regularization
parameters λg , γε and λ control the trade-off between the terms

in this optimization. Since we sample a new value of γε with
each iteration of the algorithm discussed shortly, this trade-off
is adaptively changing.

For the total variation penalty T V (x) we use the isotropic
TV model. Let ψi be the 2 × N difference operator for
pixel i . Each row of ψi contains a 1 centered on pixel i ,
and the first row also has a −1 on the pixel directly
above pixel i , while the second has a −1 corresponding
to the pixel to the right, and zeros elsewhere. Let � =
[ψT

1 , . . . , ψ
T
N ]T be the resulting 2N × N difference matrix for

the entire image. The TV coefficients are β = �x ∈ C2N ,
and the isotropic TV penalty is T V (x) = ∑

i ‖ψi x‖2 =
∑

i

√
|β|22i−1 + |β|22i , where i ranges over the pixels in the

MR image. For optimization we use the alternating direction
method of multipliers (ADMM) [30], [31]. ADMM works by
performing dual ascent on the augmented Lagrangian objective
function introduced for the total variation coefficients. For
completeness, we give a brief review of ADMM in the
appendix.

A. Algorithm

We present an algorithm for finding a local optimal solution
to the non-convex objective function given in (5). We can write
this objective as

L(x, ϕ) = λg
∑

i ‖ψi x‖2 + ∑
i
γε
2 ‖Ri x − Dαi ‖2

2

+ ∑
i f (ϕi )+ λ

2 ‖Fux − y‖2
2. (6)

We seek to minimize this function with respect to x and the
dictionary learning variables ϕi = {D, si , zi , γε, γs, π}.

Our first step is to put the objective into a more suitable
form. We begin by defining the TV coefficients for the
i th pixel as β i := [β2i−1 β2i ]T = ψi x. We introduce the
vector of Lagrange multipliers ηi , and then split β i from ψi x
by relaxing the equality via an augmented Lagrangian. This
results in the objective function

L(x, β, η, ϕ)=
N∑

i=1

λg‖β i‖2+ηT
i (ψi x − β i )+

ρ

2
‖ψi x − β i‖2

2

+
N∑

i=1

γε

2
‖Ri x − Dαi ‖2

2 + f (ϕi )

+ λ

2
‖Fux − y‖2

2. (7)

From the ADMM theory [32], this objective will have (local)
optimal values β∗

i and x∗ with β∗
i = ψi x∗, and so the equality

constraints will be satisfied [31].3 Optimizing this function can
be split into three separate sub-problems: one for TV, one for
BPFA and one for updating the reconstruction x. Following the
discussion of ADMM in the appendix, we define ui = (1/ρ)ηi

and complete the square in the first line of (7). We then cycle
through the following three sub-problems,

(P1) β ′
i = arg min

β
λg‖β‖2 + ρ

2
‖ψi x − β + ui‖2

2,

u′
i = ui + ψi x − β ′

i , i = 1, . . . , N,

3For a fixed D, α1:N and x the solution is also globally optimal.
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Algorithm 2 Outline of Algorithm

(P2) ϕ′ = arg min
ϕ

∑

i

γε

2
‖Ri x − Dαi ‖2

2 + f (ϕi ),

(P3) x′ = arg min
x

∑

i

ρ

2
‖ψi x − β ′

i + u′
i‖2

2

+
∑

i

γ ′
ε

2
‖Ri x − D′α′

i‖2
2 + λ

2
‖Fux − y‖2

2.

Solutions for sub-problems P1 and P3 are globally optimal
(conditioned on the most recent values of all other parameters).
We cannot solve P2 analytically since the optimal values for
the set of all BPFA variables do not have a closed form solu-
tion. Our approach for P2 is to use stochastic optimization by
Gibbs sampling each variable of BPFA conditioned on current
values of all other variables. We next present the updates for
each sub-problem. We give an outline in Algorithm 2.

1) Algorithm for P1 (Total Variation): We can solve for β i
exactly for each pixel i = 1, . . . , N by using a generalized
shrinkage operation [31],

β ′
i = max

{
‖ψi x + ui‖2 − λg

ρ
, 0

}
· ψi x + ui

‖ψi x + ui‖2
. (8)

We recall that β i corresponds to the 2D TV coefficients
for pixel i , with differences in one direction vertically and
horizontally. We then update the corresponding Lagrange
multiplier, u′

i = ui + ψi x − β ′
i .

2) Algorithm for P2 (BPFA): We update the parameters of
BPFA using Gibbs sampling. We are therefore stochastically
optimizing (7), but only for this sub-problem. With reference
to Algorithm 1, the P2 sub-problem entails sampling new
values for the complex dictionary D, the binary vectors zi and
real-valued weights si (with which we construct αi = si ◦ zi

through the element-wise product), the precisions γε and γs ,
and the probabilities π1:K , with πk giving the probability that
zik = 1. In principle, there is no limit to the number of
samples that can be made, with the final sample giving the
updates used in the other sub-problems. We found that a single
sample is sufficient in practice and leads to a faster algorithm.
We describe the sampling procedure below.

a) Sample dictionary D: We define the P × N matrix
X = [R1x, . . . , RN x], which is a complex matrix of all
vectorized patches extracted from the image x. We also define
the K × N matrix α = [α1, . . . , αN ] containing the dictionary
weight coefficients for the corresponding columns in X such
that Dα is an approximation of X to which we add noise
from a circularly-symmetric complex normal distribution.

The update for the dictionary D is

D = XαT (ααT + (P/γε)IP )
−1 + E, (9)

E p,:
ind∼ CN (0, (γεααT + P IP )

−1), p = 1, . . . , P,

where E p,: is the pth row of E . To sample this, we can first
draw E p,: from a multivariate Gaussian distribution with this
covariance structure, followed by an i.i.d. uniform rotation of
each value in the complex plane. We note that the first term in
Equation (9) is the �2-regularized least squares solution for D.
The addition of correlated Gaussian noise in the complex plane
generates the sample from the conditional posterior of D.
Since both the number of pixels and γε will tend to be very
large, the variance of the noise is small and the mean term
dominates the update for D.

b) Sample sparse coding αi : Sampling αi entails sam-
pling sik and zik for each k. We sample these values
using block sampling. We recall that to block sample two
variables from their joint conditional posterior distribution,
(s, z) ∼ p(s, z|−), one can first sample z from the marginal
distribution, z ∼ p(z|−), and then sample s|z ∼ p(s|z,−)
from the conditional distribution. The other sampling direction
is possible as well, but for our problem sampling z → s|z is
more efficient for finding a mode of the objective function.

We define ri,−k to be the residual error in approximating
the i th patch with the current values from BPFA minus the
kth dictionary element, ri,−k = Ri x−∑

j �=k(si j zi j )d j . We then
sample zik from its conditional posterior Bernoulli distribution
zik ∼ pikδ1 + qikδ0, where following a simplification,

pik ∝ πk

(
1 + (γε/γs)d

H
k dk

)− 1
2

(10)

× exp
{γε

2
Re(d H

k ri,−k )
2/(γs/γε + d H

k dk)
}
,

qik ∝ 1 − πk . (11)

The symbol H denotes the conjugate transpose. The probabil-
ities can be obtained by dividing both of these terms by their
sum. We observe that the probability that zik = 1 takes into
account how well dictionary element dk correlates with the
residual ri,−k . After sampling zik we sample the corresponding
weight sik from its conditional posterior Gaussian distribution,

sik |zik ∼ N

(

zik
Re(d H

k ri,−k )

γs/γε + d H
k dk

,
1

γs + γεzik d H
k dk

)

. (12)

When zik = 1, the mean of sik is the regularized least squares
solution and the variance will be small if γε is large. When
zik = 0, sik can is sampled from the prior, but does not factor
in the model in this case.

c) Sample γε and γs: We next sample from the condi-
tional gamma posterior distribution of the noise precision and
weight precision,

γε ∼ Gam
(
g0 + 1

2 P N, h0 + 1
2

∑
i ‖Ri x − Dαi ‖2

2

)
, (13)

γs ∼ Gam(e0 + 1
2

∑
i,k zik , f0 + 1

2

∑
i,k zik s2

ik). (14)

The expected value of each variable is the first term of the
distribution divided by the second, which is close to the inverse
of the average empirical error for γε.
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d) Sample πk: Sample each πk from its conditional beta
posterior distribution,

πk ∼ Beta
(

a0 + ∑N
i=1 zik , b0 + ∑N

i=1(1 − zik)
)
. (15)

The parameters to the beta distribution include counts of how
many times dictionary element dk was used by a patch.

3) Algorithm for P3 (MRI Reconstruction): The final sub-
problem is to reconstruct the image x. Our approach takes
advantage of the Fourier domain similar to other methods,
see [14], [30]. The corresponding objective function is

x′ = arg min
x

N∑

i=1

ρ

2
‖ψi x − β i + ui‖2

2 +
N∑

i=1

γε

2
‖Ri x − Dαi‖2

2

+ λ

2
‖Fux − y‖2

2.

Since this is a least squares problem, x has a closed form
solution that satisfies

(
ρ�T� + γε

∑
i RT

i Ri + λFH
u Fu

)
x

= ρ�T (β − u)+ γεPxBPFA + λFH
u y. (16)

We recall that � is the matrix of stacked ψi . The vector β is
also obtained by stacking each β i and u is the vector formed
by stacking ui . The vector xBPFA is the denoised reconstruction
from BPFA using the current D and α1:N , which results from
the definition xBPFA = 1

P

∑
i RT

i Dαi .
We observe that inverting the left N × N matrix is com-

putationally prohibitive since N is the number of pixels
in the image. Fortunately, given the form of the matrix in
Equation (16) we can use the procedure described in [14]
and simplify the problem by working in the Fourier domain.
This allows for element-wise updates in k-space, followed by
an inverse Fourier transform. We represent x as x = FH θ ,
where θ is the Fourier transform of x. We then take the Fourier
transform of each side of Equation (16) to give

F
(
ρ�T� + γε

∑
i RT

i Ri + λFH
u Fu

)
FH θ

= ρF�T (β − u)+ γεF PxBPFA + λFFH
u y. (17)

The left-hand matrix simplifies to a diagonal matrix,

F
(
ρ�T� + γε

∑
i RT

i Ri + λFH
u Fu

)
FH

= ρ�+ γεP IN + λI u
N . (18)

Term-by-term this results as follows: The product of the finite
difference operator matrix � with itself yields a circulant
matrix, which has the rows of the Fourier matrix F as its
eigenvectors and eigenvalues equal to � = F�T�FH . The
matrix RT

i Ri is a matrix of all zeros, except for ones on the
diagonal entries that correspond to the indices of x associated
with the i th patch. Since each pixel appears in P patches,
the sum over i gives P IN , and the Fourier product cancels.
The final diagonal matrix I u

N also contains all zeros, except
for ones along the diagonal corresponding to the indices in
k-space that are measured, which results from FFH

u FuFH .

Fig. 2. The three masks considered for a given sampling percentage.
(a) Random 25%. (b) Cartesian 30%. (c) Radial 25%.

Since the left matrix is diagonal we can perform element-
wise updating of the Fourier coefficients θ ,

θi = ρFi�
T (β − u)+ γεPFi xBPFA + λFiFH

u y

ρ�ii + γεP + λFiFH
u 1

. (19)

We observe that the rightmost term in the numerator and
denominator equals zero if i is not a measured k-space
location. We invert θ via the inverse Fourier transform FH

to obtain the reconstructed MR image x′.

B. Discussion on λ

In noise-free compressed sensing, the fidelity term λ can
tend to infinity giving an equality constraint for the mea-
sured k-space values [1]. However, when y is noisy the
setting of λ is critical for most CS-MRI algorithms since
this parameter controls the level of denoising in the recon-
structed image. We note that a feature of dictionary learning
CS-MRI approaches is that λ can still be set to a very
large value, and so parameter selection isn’t necessary here.
This is because a denoised version of the image is obtained
through dictionary learning (xBPFA in this paper) and can
be taken as the denoised reconstruction. In Equation (19),
we observe that by setting λ to a large value, we are
effectively fixing the measured k-space values and using the
k-space projection of BPFA and TV to fill in the missing
values. The reconstruction x will be noisy, but have artifacts
due to sub-sampling removed. The output image xBPFA is a
denoised version of x using BPFA in essentially the same
manner as in Section II-B3. Therefore, the quality of our
algorithm depends largely on the quality of BPFA as an image
denoising algorithm [25]. We show examples of this using
synthetic and clinical data in Sections IV-B and IV-E.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm on real-valued and
complex-valued MRI, and on a synthetic phantom. We con-
sider three sampling masks: 2D random sampling, Carte-
sian sampling with random phase encodes (1D random),
and pseudo radial sampling.4 We show an example of each
mask in Fig. 2. We consider a variety of sampling rates
for each mask. As a performance measure we use PSNR,
and also consider SSIM [37]. We compare with three other
algorithms: Sparse MRI [3],5 which as discussed above is a

4We used codes referenced in [3], [8], and [10] to generate these masks.
5http://www.eecs.berkeley.edu/~mlustig/Software.html
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combination of wavelets and total variation, DLMRI [14],6

which is a dictionary learning method based on K-SVD,
and PBDW [15],7 which is patch-based method that uses
directional wavelets and therefore places greater restrictions
on the dictionary. We use the publicly available code for these
algorithms indicated above and used the built-in parameter
settings, or those indicated in the relevant papers. We also
compare with the BPFA algorithm without using total variation
by setting λg = 0.

A. Set-Up

For all images, we extract 6 × 6 patches where each pixel
defines the upper left corner of a patch and wrap around
the image at the boundaries; we investigate different patch
sizes later to show that this is a reasonable size. We initial-
ize x by zero-filling in k-space. We use a dictionary with
K = 108 initial dictionary elements, recalling that the final
number of dictionary elements will be smaller due to the sparse
BPFA prior. If 108 is found to be too small, K can be increased
with the result being a slower inference algorithm.8 We ran
1000 iterations and use the results of the last iteration.

For regularization parameters, we set the data fidelity term
λ = 10100. We are therefore effectively requiring equality with
the measured values of k-space and allowing BPFA to fill
in the missing values, as well as give a denoised reconstruc-
tion, as discussed in Section III-B and highlighted below in
Sections IV-B and IV-E. After trying several values, we also
found λg = 10 and ρ = 1000 to give good results. We set the
BPFA hyperparameters as c = γ = e0 = f0 = g0 = h0 = 1.
These settings result in a relatively non-informative prior given
the amount of data we have. However, we note that our algo-
rithm was robust to these values, since the data overwhelms
these prior values when calculating posterior distributions.

B. Experiments on a GE Phantom

We consider a noisy synthetic example to highlight the
advantage of dictionary learning for CS-MRI. In Fig. 3 we
show results on a 256 × 256 GE phantom with additive
noise having standard deviation σ = 0.1. In this experiment
we use BPFA without TV to reconstruct the original image
using 30% Cartesian sampling. We show the reconstruction
using zero-filling in Fig. 3(a). Since λ = 10100, we see
in Fig. 3(b) that BPFA essentially helps reconstruct the
underlying noisy image for x. However, using the denoising
property of the BPFA model shown in Fig. 1, we obtain the
denoised reconstruction of Fig. 3(c) by focusing on xBPFA
from Equation (16). This is in contrast with the best result
we could obtain with TV in Fig. 3(d), which places the
TV penalty on the reconstructed image. As discussed, for
TV the setting of λ relative to λg is important. We set
λ = 1 and swept through λg ∈ (0, 0.15), showing the result
with highest PSNR in Fig. 3(d). Similar to Fig. 1 we show
statistics from the BPFA model in Figs. 3(e)-(g). We see that

6http://www.ifp.illinois.edu/~yoram/DLMRI-Lab/Documentation.html
7http://www.quxiaobo.org/index_publications.html
8As discussed in Section II-B, in theory K can be infinitely large.

Fig. 3. GE data with noise (σ = 0.1) and 30% Cartesian sampling. BPFA
(b) reconstructs the original noisy image, and (c) denoises the reconstruction
simultaneously. (d) TV denoises as part of the reconstruction. Also shown
are the dictionary learning variables sorted by πk . (e) the dictionary, (f) the
distribution on the dictionary, πk . (g) The normalized histogram of number
of the dictionary elements used per patch.

roughly 80 dictionary elements were used (the unused noisy
elements in Fig. 3(e) are draws from the prior). We note that
2.28 elements were used on average by a patch given that at
least one was used, which discounts the black regions.

C. Experiments on Real-Valued (Synthetic) MRI

For our synthetic MRI experiments, we consider two pub-
licly available real-valued 512 × 512 MRI9 of a shoulder
and lumbar. We construct these problems by applying the
relevant sampling mask to the projection of real-valued MRI

9www3.americanradiology.com/pls/web1/wwimggal.vmg/wwimggal.vmg



5014 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

TABLE II

PSNR RESULTS FOR REAL-VALUED LUMBAR MRI AS FUNCTION OF

SAMPLING PERCENTAGE AND MASK (CARTESIAN WITH RANDOM

PHASE ENCODES, 2D RANDOM AND PSEUDO RADIAL)

TABLE III

PSNR RESULTS FOR REAL-VALUED SHOULDER MRI AS FUNCTION OF

SAMPLING PERCENTAGE AND MASK (CARTESIAN WITH RANDOM

PHASE ENCODES, 2D RANDOM AND PSEUDO RADIAL)

into k-space. Though using such real-valued MRI data may
not reflect clinical reality, we include this idealized setting
to provide a complete set of experiments similar to other
papers [3], [14], [15]. We evaluate the performance of our
algorithm using PSNR and compare with Sparse MRI [3],
DLMRI [14] and PBDW [15]. Although the original data is
real-valued, we learn complex dictionaries since the recon-
structions are complex. We consider our algorithm with and
without the total variation penalty, denoted BPFA+TV and
BPFA, respectively.

We present the PSNR results for all sampling masks and
rates in Tables II and III. From these values we see the compet-
itive performance of the propose dictionary learning algorithm.
We also see a slight improvement by the addition of the
TV penalty. As expected, we observe that 2D random sampling
produced the best results, followed by pseudo-radial sampling
and Cartesian sampling, which is due to their decreasing level
of incoherence, with greater incoherence producing artifacts
that are more noise-like [3]. Since BPFA is good at denoising

Fig. 4. Absolute errors for 30% Cartesian sampling of synthetic lumbar
MRI. (a) BPFA+TV. (b) PBDW. (c) DLMRI. (d) Sparse MRI.

Fig. 5. Absolute errors for 20% radial sampling of the shoulder MRI.
(a) BPFA+TV. (b) PBDW. (c) DLMRI. (d) Sparse MRI.

images, the algorithm naturally performs well in this setting.
In Figs. 4 and 5 we show the absolute value of the residuals
of different algorithms using one experiment from each MRI.
We see an improvement using the proposed method, which
has more noise-like errors.

D. Experiments on Complex-Valued MRI

We also consider two clinically obtained complex-valued
MRI: We use the T2-weighted brain MRI from [4], which is
a 256 × 256 MRI of a healthy volunteer from a 3T Siemens
Trio Tim MRI scanner using the T2-weighted turbo spin echo
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TABLE IV

PSNR/SSIM RESULTS FOR COMPLEX-VALUED BRAIN MRI AS A FUNCTION OF SAMPLING PERCENTAGE. SAMPLING MASKS INCLUDE CARTESIAN

SAMPLING WITH RANDOM PHASE ENCODES, 2D RANDOM SAMPLING AND PSEUDO RADIAL SAMPLING

Fig. 6. Reconstruction results for 25% pseudo radial sampling of a complex-valued MRI of the brain. (a) Original. (b) BPFA+TV. (c) BPFA. (d) PBDW.
(e) DLMRI. (f) PSNR vs iteration. (g) BPFA+TV error. (h) BPFA error. (i) PBDW error. (j) DLMRI error.

sequence (TR/TE = 6100/99 ms, 220 × 220 mm field of view,
3 mm slice thickness). We also use an MRI scan of a lemon
obtained from the Research Center of Magnetic Resonance and
Medical Imaging at Xiamen University (TE = 32 ms, size =
256 × 256, spin echo sequence, TR/TE = 10000/32 ms,
FOV = 70×70 mm2, 2-mm slice thickness). This MRI is from
a 7T/160mm bore Varian MRI system (Agilent Technologies,
Santa Clara, CA, USA) using a quadrature-coil probe.

For the brain MRI experiment we use both PSNR and
SSIM as performance measures. We show these values in
Table IV for each algorithm, sampling mask and sampling
rate. As with the synthetic MRI, we see that our algorithm
performs competitively with the state-of-the-art. We also see
the significant improvement of all algorithms over zero-filling.
Example reconstructions are shown for each MRI dataset
in Figs. 6 and 7. Also in Fig. 7 are PSNR values for the
lemon MRI. We see from the absolute error residuals for

these experiments that the BPFA algorithm learns a slightly
finer detail structure compared with other algorithms, with
the errors being more noise-like. We also show the PSNR of
BPFA+TV and BPFA as a function of iteration. As is evident,
the algorithm does not necessarily need all 1000 iterations, but
performs competitively even in half that number.

E. Experiments in the Noisy Setting

The MRI we have considered thus far have been essentially
noiseless. For some MRI machines this may be an unrealistic
assumption. We continue our evaluation of noisy MRI begun
with the toy GE phantom in Section IV-B by evaluating
how our model performs on clinically obtained MRI with
additive noise. We show BPFA results without TV to highlight
the dictionary learning features, but note that results with
TV provide a slight improvement in terms of PSNR and
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Fig. 7. Reconstruction results for 35% 2D random sampling of a complex-valued MRI of a lemon. (a) Original. (b) BPFA+TV: PSNR = 39.64. (c) BPFA:
PSNR = 38.21. (d) PBDW: PSNR = 37.89. (e) DLMRI: PSNR = 35.05. (f) PSNR vs iteration. (g) BPFA+TV error. (h) BPFA error. (i) PBDW error.
(j) DLMRI error.

Fig. 8. PSNR vs λ in the noisy setting (σ = 0.03) for the complex-value
brain MRI with 30% 2D random sampling.

SSIM. We again consider the brain MRI and use additive
complex white Gaussian noise having standard deviation
σ = 0.01, 0.02, 0.03. For all experiments we use the original
noise-free MRI as the ground truth.

As discussed in Section III-B and illustrated in
Section IV-B, dictionary learning allows us to consider
two possible reconstructions: the actual reconstruction x, and
the denoised BPFA reconstruction xBPFA = 1

P

∑
i RT

i Dαi .
As detailed in these sections, as λ becomes larger the
reconstruction will be noisier, but with the artifacts from
sub-sampling removed. However, for all values of λ, xBPFA
produces a denoised version that essentially doesn’t change.
We see this clearly in Fig. 8, where we show the PSNR
of each reconstruction as a function of λ. When λ is
small, the performance degrades for both algorithms since
too much smoothing is done by dictionary learning on x.
As λ increases, both improve, but eventually the reconstruction
of x degrades again because near equality to the noisy y is
being more strictly enforced. The denoised reconstruction

however levels off and does not degrade. We show
PSNR values in Table V as a function of noise level.10

10We are working with a different scaling of the MRI than in [14] and made
the appropriate modifications. Also, since DLMRI is a dictionary learning
method it can output “xKSVD”, though it was not originally motivated this
way. Issues discussed in Sections II-B.2 and II-B.3 apply in this case.

Fig. 9. The denoising properties of dictionary learning on noisy complex-
valued MRI with 35% Cartesian sampling and σ = 0.03. (a) Zero filling.
(b) BPFA reconstruction (x). (c) BPFA denoising (xBPFA). (d) DLMRI.

TABLE V

PSNR FOR 35% CARTESIAN SAMPLING OF COMPLEX-VALUED BRAIN

MRI FOR VARIOUS NOISE STANDARD DEVIATIONS. (λ = 10100 )

Example reconstructions that parallel those given in Fig. 3 are
also shown in Fig. 9. These results highlight the robustness
of our approach to λ in the noisy setting, and we note that we
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Fig. 10. Radial sampling for the Brain MRI. (a)-(c) The learned dictionary
for various sampling rates. The noisy elements towards the end of each were
unused and are samples from the prior. (d) The cumulative function of the
sorted πk from BPFA for each sampling rate. This gives information on
sparsity and average usage of the dictionary. (e) The distribution on the number
of elements used per patch for each sampling rate.

encountered no stability issues using extremely large values
of λ.

F. Dictionary Learning and Further Discussion

We investigate the model learned by BPFA. In Fig. 10
we show dictionary learning results learned by BPFA+TV
for radial sampling of the complex Brain MRI. In the top
portion, we show the dictionaries learned for 10%, 20% and
30% sampling. We see that they are similar in their shape, but
the number of elements increases as the sampling percentage
increases since more complex information about the image is
contained in the k-space measurements. We again note that
unused elements are represented by draws from the prior.
In Fig. 10(d) we show the cumulative sum of the ordered πk

from BPFA. We can read off the average number of elements
used per patch by looking at the right-most value. We see
that more elements are used per patch as the fraction of
observed k-space increases. We also see that for 10%, 20%
and 30% sampling, roughly 70, 80 and 95, respectively, of
the 108 total dictionary elements were significantly used, as
indicated by the leveling off of these functions. This highlights
the adaptive property of the nonparametric beta process prior.
In Fig. 10(e) we show the empirical distribution on the number
of dictionary elements used per patch for each sampling rate.

TABLE VI

PSNR AS A FUNCTION OF PATCH SIZE FOR A REAL-VALUED AND

COMPLEX-VALUED BRAIN MRI WITH CARTESIAN SAMPLING

TABLE VII

TOTAL RUNTIME IN MINUTES (SECONDS/ITERATION). WE RAN

1000 ITERATIONS OF BPFA, 100 OF DLMRI AND

10 OF SPARSE MRI

We see that there are two modes, one for the empty back-
ground and one for the foreground, and the second mode tends
to increase as the sampling rate increases. The adaptability of
this value to each patch is another characteristic of the beta
process model.

We also performed an experiment with varying patch sizes
and show our results in Table VI. We see that the results
are not very sensitive to this setting and that comparisons
using 6 × 6 patches are meaningful. We also compare the
runtime for different algorithms in Table VII, showing both
the total runtime of each algorithm and the per-iteration
times using an Intel Xeon CPU E5-1620 at 3.60GHz, 16.0G
ram. However, we note that we arguably ran more iterations
than necessary for these algorithms; the BPFA algorithms
generally produced high quality results in half the number
of iterations, as did DLMRI (the authors of [14] recommend
20 iterations), while Sparse MRI uses 5 iterations as default
and the performance didn’t improve beyond 10 iterations.
We note that the speed-up over DLMRI arises from the lack of
the OMP algorithm, which in Matlab is much slower than our
sparse coding update.11 We note that inference for the BPFA
model is easily parallelizable—as are the other dictionary
learning algorithms—which can speed up processing time.

The proposed method has several advantages, which we
believe leads to the improvement in performance. A significant
advantage is the adaptive learning of the dictionary size
and per-patch sparsity level using a nonparametric stochastic
process that is naturally suited for this problem. Several other
dictionary learning parameters such as the noise variance and
the variances of the score weights are adjusted as well through
a natural MCMC sampling approach. These benefits have
been investigated in other applications of this model [25], and
naturally translate here since CS-MRI with BPFA is closely
related to image denoising as we have shown.

Another advantage of our model is the Markov Chain
Monte Carlo inference algorithm itself. In highly non-convex
Bayesian models (or similar models with a Bayesian interpre-
tation), it is often observed by the statistics community that

11BPFA is significantly faster than K-SVD in Matlab because it requires
fewer loops. This difference may not be as large with other coding languages.
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MCMC sampling can outperform deterministic methods, and
rarely performs worse [38]. Given that BPFA is a Bayesian
model, such sampling techniques are readily derived, as we
showed in Section III-A.

V. CONCLUSION

We have presented an algorithm for CS-MRI reconstruction
that uses Bayesian nonparametric dictionary learning. Our
Bayesian approach uses a model called beta process factor
analysis (BPFA) for in situ dictionary learning. Through this
hierarchical generative structure, we can learn the dictionary
size, sparsity pattern and additional regularization parame-
ters. We also considered a total variation penalty term for
additional constraints on image smoothness. We presented an
optimization algorithm using the alternating direction method
of multipliers (ADMM) and MCMC Gibbs sampling for all
BPFA variables. Experimental results on real and complex-
valued MRI showed that our proposed regularization frame-
work compares favorably with other algorithms for various
sampling trajectories and rates. We also showed the natural
ability of dictionary learning to handle noisy MRI without
dependence on the measurement fidelity parameter λ. To this
end, we showed that the model can enforce a near equality
constraint to the noisy measurements and use the dictionary
learning result as a denoised output of the noisy MRI.

APPENDIX

We give a brief review of the ADMM algorithm [32].
We start with the convex optimization problem

min
x

‖Ax − b‖2
2 + h(x), (20)

where h is a non-smooth convex function, such as an
�1 penalty. ADMM decouples the smooth squared error term
from this penalty by introducing a second vector v such that

min
x

‖Ax − b‖2
2 + h(v) subject to v = x. (21)

This is followed by a relaxation of the equality v = x via an
augmented Lagrangian term

L(x, v, η) = ‖Ax − b‖2
2 + h(v)+ ηT (x − v)+ ρ

2
‖x − v‖2

2.

(22)

A minimax saddle point is found with the minimization taking
place over both x and v and dual ascent for η.

Another way to write the objective in (22) is to define
u = (1/ρ)η and combine the last two terms. The result is
an objective that can be optimized by cycling through the
following updates for x, v and u,

x′ = arg min
x

‖Ax − b‖2
2 + ρ

2
‖x − v + u‖2

2, (23)

v′ = arg min
v

h(v)+ ρ

2
‖x′ − v + u‖2

2, (24)

u′ = u + x′ − v′. (25)

This algorithm simplifies the optimization since the objective
for x is quadratic and thus has a simple analytic solution,
while the update for v is a proximity operator of h with
penalty ρ, the difference being that v is not pre-multiplied

by a matrix as x is in (20). Such objective functions tend to
be easier to optimize. For example when h is the TV penalty
the solution for v is analytical.
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